Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-07-06T08:53:05.854Z Has data issue: false hasContentIssue false

Materials Science of High-Level Nuclear Waste Immobilization

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

With the increasing demand for the development of nuclear power comes the responsibility to address the issue of waste, including the technical challenges of immobilizing high-level nuclear wastes in stable solid forms for interim storage or disposition in geologic repositories. The immobilization of high-level nuclear wastes has been an active area of research and development for over 50 years. Borosilicate glasses and complex ceramic composites have been developed to meet many technical challenges and current needs, although regulatory issues, which vary widely from country to country, have yet to be resolved. Cooperative international programs to develop advanced proliferation-resistant nuclear technologies to close the nuclear fuel cycle and increase the efficiency of nuclear energy production might create new separation waste streams that could demand new concepts and materials for nuclear waste immobilization. This article reviews the current state-of-the-art understanding regarding the materials science of glasses and ceramics for the immobilization of highlevel nuclear waste and excess nuclear materials and discusses approaches to address new waste streams.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Cohen, B.L., Rev. Mod. Phys. 49, 1 (1977).CrossRefGoogle Scholar
2 Ewing, R.C., MRS Bull. 33, 338 (2008).CrossRefGoogle Scholar
3 Lutze, W., Ewing, R.C., Radioactive Waste Forms for the Future (North Holland, Amsterdam, 1988).Google Scholar
4 Mueller, I., Weber, W.J., MRS Bull. 26, 698 (2001).CrossRefGoogle Scholar
5 Paul, A., Chemistry of Glasses (Chapman & Hall, New York, ed. 2, 1990).Google Scholar
6 Grambow, B., Elements 2, 357 (2006).CrossRefGoogle Scholar
7 Stefanovsky, S.V., Yudintsev, S.V., Gierè, R., Lumpkin, G.R., in Energy, Waste, and the Environment: A Geochemical Perspective, Gierè, R., Stille, P., Eds. (Special Publication 236, Geological Society of London, London, 2004), p. 37.Google Scholar
9 McCarthy, G.J., Nucl. Technol. 32, 92 (1977).CrossRefGoogle Scholar
10 Ringwood, A.E., Kesson, S.E., Ware, N.G., Hibberson, W.O., Major, A., Geochem. J. 13, 141 (1979).CrossRefGoogle Scholar
11 Ringwood, A.E., Oversby, V.M., Kesson, S.E., Sinclair, W., Ware, N., Hibberson, W., Major, A., Nucl. Chem. Waste Manage. 2, 287 (1981).CrossRefGoogle Scholar
12 Ringwood, A.E., Am. Sci. 70, 201 (1982).Google Scholar
13 Kesson, S.E., Sinclair, W.J., Ringwood, A.E., Nucl. Chem. Waste Manage. 4, 259 (1983).Google Scholar
14 Newkirk, H.W., Hoenig, C.L., Ryerson, F.L., Tewhey, J.D., Smith, G.S., Rossington, C.S., Brackmann, A.J., Ringwood, A.E., Ceram. Bull. 61, 559 (1982).Google Scholar
15 Weber, W.J., Ewing, R.C., Angell, C.A., Arnold, G.W., Delaye, J.M., Griscom, D.L., Hobbs, L.W., Navrotsky, A., Price, D.L., Stoneham, A.M., Weinberg, M.C., J. Mater. Res. 12, 1946 (1997).CrossRefGoogle Scholar
16 Weber, W.J., Ewing, R.C., Catlow, C.R.A., Diaz de la Rubia, T., Hobbs, L.W., Kinoshita, C., Matzke, Hj., Motta, A.T., Nastasi, M., Salje, E.K.H., Vance, E.R., Zinkle, S.J., J. Mater. Res. 13, 1434 (1998).CrossRefGoogle Scholar
17 Ewing, R.C., Weber, W.J., Lian, J., J. Appl. Phys. 95, 5949 (2004).CrossRefGoogle Scholar
18 Lumpkin, G.R., Elements 2, 365 (2006).CrossRefGoogle Scholar
19 Urusov, V.S., Organova, N.I., Karimova, O.V., Yudintsev, S.V., Stefanovsky, S.V., Trans. (Dokl.) Russ. Acad. Sci./Earth Sci. Sec. 401, 319 (2005).Google Scholar
20 Yudintsev, S.V., Stefanovsky, S.V., Ewing, R.C., in Structural Chemistry of Inorganic Actinide Compounds, Krivovichev, S.V., Burns, P.C., Tananaev, I.V., Eds. (Elsevier, Amsterdam, 2007), p. 457.CrossRefGoogle Scholar
21 Burakov, B.E., Anderson, E.B., Knecht, D.A., Zamoryanskaya, M.A., Strykanova, E.E., Yagovkina, M.A., “Synthesis of Garnet/Perovskite-Based Ceramic for the Immobilization of Pu-Residue Wastes,” in Mater. Res. Soc. Symp. Proc. 556, Wronkiewicz, D.J., Lee, J.H., Eds. (Materials Research Society, Warrendale, PA, 1999), p. 55.Google Scholar
22 Hayward, P.J., in Radioactive Waste Forms for the Future, Lutze, W., Ewing, R.C., Eds. (North Holland, Amsterdam, 1988), chap. 7, p. 427.Google Scholar
23 , A.K., Luckscheiter, F., Lutze, W., Malow, G., Schiewer, E., Am. Ceram. Soc. Bull. 55, 500 (1976).Google Scholar
24 Martin, C., Ribet, I., Frugier, P., Gin, S., J. Nucl. Mater. 366, 277 (2007).CrossRefGoogle Scholar
25 Strachan, D.M., Schulz, W.W., Ceram. Bull. 58, 865 (1979).Google Scholar
26 Gallagher, S.A., McCarthy, G.J., Pfoertsch, D.E., Am. Ceram. Soc. Bull. 55, 461 (1976).Google Scholar
27 Chartier, A., Meis, C., Gale, J.D., Phys. Rev. B 64, 085110 (2001).CrossRefGoogle Scholar
28 Balmer, M.L., Huang, Q., Wong-Ng, W., Roth, R.S., Santoro, A., J. Solid State Chem. 130, 97 (1997).CrossRefGoogle Scholar
29 He, Y., Bao, W., Song, C., J. Nucl. Mater. 305, 202 (2002).CrossRefGoogle Scholar
30 Helean, K.B., Navrotsky, A., Vance, E.R., Carter, M.L., Ebbinghaus, B., Krikorian, O., Kian, J., Wang, L.M., Catalano, J.G., J. Nucl. Mater. 303, 226 (2002).CrossRefGoogle Scholar
31 Hughes Kubatko, K.-A., Helean, K.B., Navrotsky, A., Burns, P.C., Science 302, 1191 (2003).CrossRefGoogle Scholar
32 Hughes Kubatko, K.-A., Helean, K.B., Navrotsky, A., Burns, P.C., Am. Mineral. 90, 1284 (2005).CrossRefGoogle Scholar
33 Kubatko, K.-A., Helean, K.B., Navrotsky, A., Burns, P.C., Am. Mineral. 91, 658 (2006).CrossRefGoogle Scholar
34 Helean, K.B., Ushakov, S.V., Brown, C.E., Navrotsky, A., Lian, J., Ewing, R.C., Farmer, J.M., Boatner, L.A., J. Solid State Chem. 177, 1858 (2004).CrossRefGoogle Scholar
35 Helean, K.B., Navrotsky, A., Lian, J., Ewing, R.C., “Correlation of formation enthalpies with critical amorphization temperature for pyrochlore and monazite,” in Mater. Res. Soc. Symp. Proc. 824, Hanchar, J.M., Stroes-Gascoyne, S., Browning, L., Eds. (Materials Research Society, Warrendale, PA, 2004), p. 279.Google Scholar
36 Xu, H., Navrotsky, A., Nyman, M.D., Nenoff, T.M., J. Mater. Res. 15, 815 (2000).CrossRefGoogle Scholar
37 Xu, H., Navrotsky, A., Nyman, M.D., Nenoff, T.M., J. Mater. Res. 20, 618 (2005).CrossRefGoogle Scholar
38 Gray, W.J., Nature 296, 547 (1982).CrossRefGoogle Scholar
39 Vance, E.R., Roy, R., Pepin, J.G., Agrawal, D.K., J. Mater. Sci. 17, 947 (1982).CrossRefGoogle Scholar
40 Vernaz, E., Loida, A., Malow, G., Marples, J.A.C., Matzke, Hj., in Proc. 3rd EC Conf. on Radioactive Waste Management and Disposal, Cecille, L., Ed. (Elsevier, London, 1991), p. 302.Google Scholar
41 Strachan, D.M., Scheele, R.D., Buck, E.C., Icenhower, J.P.. Kozelisky, A.E., Sell, R.L., Elovich, R.J., Buchmiller, W.C., J. Nucl. Mater. 345, 109 (2005).CrossRefGoogle Scholar
42 Stefanovsky, S.V., Lukinykh, A.N., Tomilin, S.V., Lizin, A.A., Yudintsev, S.V., “Alpha-Decay Damage in Murataite-Based Ceramics,” in Mater. Res. Soc. Symp. Proc. 1107, Lee, W.E., Roberts, J.W., Hyatt, N.C., Grimes, R.W., Eds. (Materials Research Society, Warrendale, PA, 2008), p. 389.Google Scholar
43 Malow, G., Marples, J.A.C., Sombret, C., in Radioactive Waste Management and Disposal, Simon, R., Orlowski, S., Eds. (Harwood Academic Publishers, Chur, Switzerland, 1980), p. 341.Google Scholar
44 Turcotte, R.P., Wald, J.W., Roberts, F.P., Rusin, J.M., Lutze, W., J. Am. Ceram. 65, 589 (1982).CrossRefGoogle Scholar
45 Strachan, D.M., Scheele, R.D., Buck, E.C., Kozelisky, A.E., Sell, R.L., Elovich, R.J., Buchmiller, W.C., J. Nucl. Mater. 372, 16 (2008).CrossRefGoogle Scholar
46 Burakov, B.E., Yagovkina, M.A., Garbuzov, V.M., Kitsay, A.A., Zirlin, V.A., “Self-Irradiation of Monazite Ceramics: Contrasting Behavior of PuPO4 and (La,Pu)PO4 Doped with Pu-238,” in Mater. Res. Soc. Symp. Proc. 824, Hanchar, J.M., Stroes-Gascoyne, S., Browning, L., Eds. (Materials Research Society, Warrendale, PA, 2004), p. 219.Google Scholar
47 Weber, W.J., Devanathan, R., Meldrum, A., Boatner, L.A., Ewing, R.C., Wang, L.M., “The Effect of Temperature and Damage Energy on Amorphization in Zircon,” in Mater. Res. Soc. Symp. Proc. 540, Zinkle, S.J., Lucas, G.E., Ewing, R.C., Williams, J.S., Eds. (Materials Research Society, Warrendale, PA, 1999), p. 367.Google Scholar
48 Ewing, R.C., Meldrum, A., Wang, L.M., Weber, W.J., Corrales, L.R., Rev. Mineral. Geochem. 53, 387 (2003).CrossRefGoogle Scholar
49 Wang, S.X., Begg, B.D., Wang, L.M., Ewing, R.C., Weber, W.J., Govidan, K.V. Kutty, J. Mater. Res. 14, 4470 (1999).CrossRefGoogle Scholar
50 Weber, W.J., Ewing, R.C., Science 289, 2051 (2000).CrossRefGoogle Scholar
51 Sickafus, K.E., Minervini, L., Grimes, R.W., Valdez, J.A., Ishimaru, M., Li, F., McClellan, K.J., Hartman, T., Science 289, 748 (2000).CrossRefGoogle Scholar
52 Weber, W.J., Ewing, R.C., Meldrum, A., J. Nucl. Mater. 250, 147 (1997).CrossRefGoogle Scholar
53 Weber, W.J., Ewing, R.C., “Radiation Effects in Crystalline Oxide Host Phases for the Immobilization of Actinides,” in Mater. Res. Soc. Symp. Proc. 713, McGrail, B.P., Cragnolino, G.A., Eds. (Materials Research Society, Warrendale, PA, 2002), p. 443.Google Scholar
54 Zhang, Y., Bae, I.-T., Weber, W.J., Nucl. Instrum. Methods B 266, 2828 (2008).CrossRefGoogle Scholar
55 Wellman, D.M., Icenhower, J.P., Weber, W.J., J. Nucl. Mater. 340, 149 (2005).CrossRefGoogle Scholar
56 Stefanovsky, S.V., Yudintsev, S.V., Nikonov, B.S., Mokhov, A.V., Perevalov, S.A., Stefanovsky, O.I., Ptashkin, A.G., “Phase Compositions and Leach Resistance of Actinide-Bearing Murataite Ceramics,” in Mater. Res. Soc. Symp. Proc. 893, Sarrao, J.L., Schwartz, A.J., Antonio, M.R., Burns, P.C., Haire, R.G., Nitsche, H., Eds. (Materials Research Society, Warrendale, PA, 2006), p. 429.Google Scholar
57 Stefanovsky, S.V., Yudintsev, S.V., Perevalov, S.A., Startseva, I.V., Varlakova, G.A., J. Alloys Compd. 444–445, 618 (2007).CrossRefGoogle Scholar
58 Yudintsev, S.V., Osherova, A.A., Dubinin, A.V., Zotov, A.V., Stefanovsky, S.V., “Corrosion Study of Actinide Waste Forms with Garnet-Type Structure,” in Mater. Res. Soc. Symp. Proc. 824, Hanchar, J.M., Stroes-Gascoyne, S., Browning, L., Eds. (Materials Research Society, Warrendale, PA, 2004), p. 287.Google Scholar
59 Ribet, S., Gin, S., J. Nucl. Mater. 324, 152 (2004).CrossRefGoogle Scholar
60 Janney, D.E., “Host Phases for Actinide Elements in the Metallic Waste Form,” in Mater. Res. Soc. Symp. Proc. 757, Finch, R.J., Bullen, D.B., Eds. (Materials Research Society, Warrendale, PA, 2003), p. 343.Google Scholar