Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-12-03T21:56:55.808Z Has data issue: false hasContentIssue false

The many faces of far-from-equilibrium thermodynamics: Deterministic chaos, randomness, or emergent order?

Published online by Cambridge University Press:  12 February 2019

Atanu Chatterjee
Affiliation:
Department of Physics, Worcester Polytechnic Institute, USA; achatterjee3@wpi.edu
Germano Iannacchione
Affiliation:
Worcester Polytechnic Institute, and Condensed Matter Physics Program, Division of Materials Research, National Science Foundation, USA; gsiannac@wpi.edu
Get access

Abstract

Far-from-equilibrium systems are ubiquitous in nature. They are also rich in terms of diversity and complexity. Therefore, it is an intellectual challenge to be able to understand the physics of far-from-equilibrium phenomena. In this article, we revisit a standard tabletop experiment, the Rayleigh–Bénard convection, to explore some fundamental questions and present a new perspective from a first-principles point of view. We address how nonequilibrium fluctuations differ from equilibrium fluctuations, how emergence of order out of equilibrium breaks symmetries in the system, and how free energy of a system gets locally bifurcated to operate a Carnot-like engine to maintain order. The exploration and investigation of these nontrivial questions are the focus of this article.

Type
Bioinspired Far-From-Equilibrium Materials
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Clausius, R., Ann. Phys. 169 (12), 481 (1854).CrossRefGoogle Scholar
Planck, M., Treatise on Thermodynamics (Courier Corporation, 2013).Google Scholar
Gibbs, J.W., The Scientific Papers of J. Willard Gibbs (Longmans, Green and Co., 1906), vol. 1.Google Scholar
Martyushev, L.M., Seleznev, V.D., Phys. Rep. 426 (1), 1 (2006).CrossRefGoogle Scholar
Lieb, E.H., Yngvason, J., “A Guide to Entropy and the Second Law of Thermodynamics,” in Statistical Mechanics (Springer, Berlin, 1998), pp. 353363.CrossRefGoogle Scholar
Cross, M.C., Hohenberg, P.C., Rev. Mod. Phys. 65 (3), 851 (1993).CrossRefGoogle Scholar
Huber, L., Suzuki, R., Krüger, T., Frey, E., Bausch, A.R., Science 361 (6399), 255 (2018).CrossRefGoogle Scholar
Kuramoto, Y., Nishikawa, I., J. Stat. Phys. 49 (3), 569 (1987).CrossRefGoogle Scholar
Georgiev, G.Y., Chatterjee, A., “The Road to a Measurable Quantitative Understanding of Self-Organization and Evolution,” in Evolution and Transitions in Complexity (Springer, Cambridge, UK, 2016), pp. 223230.CrossRefGoogle Scholar
Chatterjee, A., “Energy, Entropy and Complexity: Thermodynamic and Information-Theoretic Perspectives on Ageing,” in Challenging Ageing: The Anti-Senescence Effects of Hormesis, Environmental Enrichment, and Information Exposure (Bentham Science, 2016), pp. 169200.Google Scholar
Chatterjee, A., Georgiev, G., Iannacchione, G.S., Mech. Ageing Dev. 163, 2 (2017).CrossRefGoogle Scholar
Jaeger, H.M., Liu, A.J., Condens. Matter Soft (2010), https://arXiv.org/abs/1009.4874.Google Scholar
Zhang, D., Györgyi, L., Peltier, W.R., Chaos Interdiscip. J. Nonlinear Sci. 3 (4), 723 (1993).CrossRefGoogle Scholar
Chillà, F., Schumacher, J., Eur. Phys. J. E 35 (7), 58 (2012).CrossRefGoogle Scholar
Kolmogorov, A.N., Dokl. Akad. Nauk SSSR 30 (4), 299 (1941).Google Scholar
Vilar, J.M., Rubi, J.M., Proc. Natl. Acad. Sci. U.S.A. 98 (20), 11081 (2001).CrossRefGoogle Scholar
Casas-Vázquez, J., Jou, D., Rep. Prog. Phys. 66 (11), 1937 (2003).CrossRefGoogle Scholar
García-Morales, V., Pellicer, J., Manzanares, J.A., Ann. Phys. 323 (8), 1844 (2008).CrossRefGoogle Scholar
Koschmieder, E.L., Bénard Cells and Taylor Vortices (Cambridge University Press, UK, 1993).Google Scholar
Pandey, A., Scheel, J.D., Schumacher, J., Nat. Commun. 9 (1), 2118 (2018).CrossRefGoogle Scholar
Chatterjee, A., Iannacchione, G.S., “Non-equilibrium Thermodynamics from First Principles,” Bull. Am. Phys. Soc. Y47.00001 (March 2018).Google Scholar
Niemela, J.J., Skrbek, L., Sreenivasan, K.R., Donnelly, R.J., Nature 404 (6780), 837 (2000).CrossRefGoogle Scholar
Georgiev, G., Iannacchione, G.S., Chatterjee, A., Vu, T., “Bénard Cells as a Model for Entropy Production, Entropy Decrease, and Action Minimization in Self-Organization,” presented at the Conference on Complex Systems (CCS17), Cancun, Mexico, September 17–22, 2017.Google Scholar
Yadati, Y., McGrath, S., Chatterjee, A., Georgiev, G., Iannacchione, G., “A Detailed Thermodynamic Study of Rayleigh–Bénard Cells,” Bull. Am. Phys. Soc. K47.00001 (March 2018).Google Scholar
Grossmann, S., Lohse, D., Phys. Fluids 16 (12), 4462 (2004).CrossRefGoogle Scholar
Chatterjee, A., Complexity 21 (S1), 307 (2016).CrossRefGoogle Scholar
Chatterjee, A., Int. J. Basic Appl. Sci. 1 (4), 584 (2012).Google Scholar
Kadanoff, L.P., Phys. Today 54 (8), 34 (2001).CrossRefGoogle Scholar