Skip to main content Accessibility help
×
Home
Hostname: page-component-684bc48f8b-vgwqb Total loading time: 0.322 Render date: 2021-04-11T12:38:06.111Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Article contents

Greater than the sum: Synergy and emergent properties in nanoparticle–polymer composites

Published online by Cambridge University Press:  04 September 2015

Millicent A. Firestone
Affiliation:
Materials Physics & Applications Division, Center for Integrated Nanotechnologies, Los Alamos National Laboratory, USA; firestone@lanl.gov
Steven C. Hayden
Affiliation:
Materials Physics & Applications Division, Center for Integrated Nanotechnologies, Los Alamos National Laboratory, USA; scchayden@gmail.com
Dale L. Huber
Affiliation:
Center for Integrated Nanotechnologies, Sandia National Laboratories, USA; dale.huber@sandia.gov
Get access

Abstract

The ongoing pursuit of multifunctional soft materials that can impact a wide range of technological challenges, ranging from information processing to energy storage and transducing devices, has resulted in the development of hybrid materials composed of nanoparticles (NPs) dispersed in polymers. Beyond the simple preparation of composites that have the additive value of the individual components, this review discusses recent work and trends in composites that exhibit novel synergistic or emergent properties arising from combining the components. In particular, we highlight recent examples of composites in which NP assembly within polymers leads to enhancement or changes of the NP properties and how introducing NPs into a polymer can cause significant changes in the polymer’s intrinsic properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below.

References

Kovalenko, M.V., Manna, L., Cabot, A., Hens, Z., Talapin, D.V., Kagan, C.R., Klimov, V.I., Rogach, A.L., Reiss, P., Milliron, D.J., Guyot-Sionnnest, P., Konstantatos, G., Parak, W.J., Hyeon, T., Korgel, B.A., Murray, C.B., Heiss, W., ACS Nano 9 (2), 1012 (2015).CrossRef
Melinon, P., Begin-Colin, S., Duvail, J.L., Gauffre, F., Boime, N.H., Ledoux, G., Plain, J., Reiss, P., Silly, F., Warot-Fonrose, B., Phys. Rep. 543 (3), 163 (2014).CrossRef
Tenne, R., Front. Phys. 9 (3), 370 (2014).CrossRef
Polking, M.J., Alivisatos, A.P., Ramesh, R., MRS Commun. 5 (01), 27 (2015).
Banin, U., Ben-Shahar, Y., Vinokurov, K., Chem. Mater. 26 (1), 97 (2014).CrossRef
Heiligtag, F.J., Niederberger, M., Mater. Today 16 (7–8), 262 (2013).CrossRef
Li, Y.J., Zhu, H., Hon, C., Jiang, Y., Li, Y.F., Prog. Chem. 25 (2–3), 276 (2013).
Majetich, S.A., Wen, T.L., Mefford, O.T., MRS Bull. 38 (11), 899 (2013).CrossRef
Xia, Y.N., Xia, X.H., Wang, Y., Xie, S.F., MRS Bull. 38 (4), 335 (2013).CrossRef
Olson, J., Dominguez-Medina, S., Hoggard, A., Wang, L.Y., Chang, W.S., Link, S., Chem. Soc. Rev. 44 (1), 40 (2015).CrossRef
Nguyen, T.D., Nanoscale 5 (20), 9455 (2013).CrossRef
Zaera, F., ChemSusChem 6 (10), 1797 (2013).CrossRef
Kolhatkar, A.G., Jamison, A.C., Litvinov, D., Willson, R.C., Lee, T.R., Int. J. Mol. Sci. 14 (8), 15977 (2013).CrossRef
Xu, C., Qu, X.G., NPG Asia Mater. 6 e90, (2014).CrossRef
Schauermann, S., Nilius, N., Shaikhutdinov, S., Freund, H.J., Acc. Chem. Res. 46 (8), 1673 (2013).CrossRef
Gross, E., Liu, J.H.C., Toste, F.D., Somorjai, G.A., Nat. Chem. 4 (11), 947 (2012).CrossRef
Huber, D.L., Small 1 (5), 482 (2005).CrossRef
Balazs, A., Emrick, T., Russell, T.P., Science 314, 1107 (2006).CrossRef
Hanemann, T., Szabó, D.V., Materials 3, 3468 (2010).CrossRef
Jeon, I.Y., Baek, J.B., Materials 3 (6), 3654 (2010).CrossRef
Kumar, S.K., Krishnamoorti, R., Annu. Rev. Chem. Biomol. Eng. 1, 37 (2010).CrossRef
Schexnailder, P., Schmidt, G., Colloid Polym. Sci. 287, 1 (2009).CrossRef
Ingrosso, C., Panniello, A., Comparelli, R., Curri, M.L., Striccoli, M., Materials 3, 1316 (2010).CrossRef
Sarkar, S., Guibal, E., Quignard, F., SenGupta, A.K., J. Nanopart. Res. 14, 1 (2012).CrossRef
Sarkar, B., Alexandridis, P., Prog. Polym. Sci. 40, 33 (2015).CrossRef
Hassanabadi, H.M., Rodrigue, D., Macromol. Mater. Eng. 299 (10), 1220 (2014).CrossRef
Coleman, J.N., Khan, U., Blau, W.J., Gun’ko, Y.K., Carbon 44, 1624 (2006).CrossRef
Mark, E., in Handbook of Multiphase Polymer Systems, Boudenne, A., Ibos, L., Candau, Y., Thomas, S., Eds. (Wiley, New York, 2011) pp. 959980.CrossRefGoogle Scholar
Kao, J., Bai, P., Chuang, V. P., Jiang, Z., Ercius, P., Xu, T., Nano Lett. 12, 2610 (2012).CrossRef
Kumar, S.K., Jouault, N., Macromolecules 46, 3199 (2013).CrossRef
Wang, L.B., Xu, L.G., Kuang, H., Xu, C.L., Kotov, N.A., Acc. Chem. Res. 45 (11), 1916 (2012).CrossRef
Zhang, H., Han, J., Yang, B., Adv. Funct. Mater. 20, 1533 (2010).CrossRef
Baia, L., Baia, M., Kiefer, W., Popp, J., Simon, S., Chem. Phys. 327, 63 (2006).CrossRef
Simo, A., Polte, J., Pfänder, N., Vainio, U., Emmerling, F., Rademann, K., J. Am. Chem. Soc. 134, 18824 (2012).CrossRef
Heck, G., Napp, J., Simonato, S., Möllmer, J., Lange, M., Reichardt, H.M., Staudt, R., Alves, F., Feldmann, C., J. Am. Chem. Soc. 137, 7329 (2015).CrossRef
Saha, K., Agasti, S.S., Kim, C., Li, X., Rotello, V.M., Chem. Rev. 112 (5), 2739 (2012).CrossRef
Auyeung, E., Li, T.I.N.G., Senesi, A.J., Schmucker, A.L., Pals, B.C., de la Cruz, M.O., Mirkin, C.A., Nature 505, 73 (2014).CrossRef
Li, S., Lin, M.M., Toprak, M.S., Kim, D.K., Muhammed, M., Nano Rev. 1, 5214 (2010).CrossRef
Arciniegas, M.P., Kim, M.R., De Graaf, J., Brescia, R., Marras, S., Miszta, K., Dijkstra, M., van Roij, R., Manna, L., Nano Lett. 14 (2), 1056 (2014).CrossRef
Jiao, Y., Akcora, P., Macromolecules 45 (8), 3463 (2012).CrossRef
Yang, X., Chueh, C.C., Li, C.Z., Yip, H.L., Yin, P., Chen, H., Chen, W.C., Jen, A.K.Y., Adv. Energy Mater. 3 (5), 666 (2013).CrossRef
Pavlov, A.M., Gabriel, S.A., Sukhorukov, G.B., Gould, D.J., Nanoscale 7 (21), 9686 (2015).CrossRef
Hammond, P.T., Adv. Mater. 16, 1271 (2004).CrossRef
Srivastava, S., Kotov, N., Acc. Chem. Res. 41, 1831 (2008).CrossRef
Wang, Y., Angelatos, A.S., Caruso, F., Chem. Mater. 20, 848 (2008).CrossRef
Bockstaller, M.R., Mickiewicz, R.A., Thomas, E.L., Adv. Mater. 17, 1331 (2005).CrossRef
Kao, J., Bai, P., Chuang, V.P., Jiang, Z., Ercius, P., Xu, T., Nano Lett. 12, 2610 (2012).CrossRef
Williams, R.J.J., Hoppe, C.E., Zucchi, I.A., Romeo, H.E., Dell’Erba, I.E., Gomez, M.L., Puig, J., Leonardi, A.B., J. Colloid Interface Sci. 447, 129 (2015).CrossRef
Luo, Q., Hickey, R.J., Park, S.-J., ACS Macro Lett. 2 (2), 107 (2013).CrossRef
Tang, E., Cheng, G., Ma, X., Powder Technol. 161, 209 (2006).CrossRef
Green, P.F., Soft Matter 7, 7914 (2011).CrossRef
Grabowski, C.A., Koerner, H., Meth, J.S., Dang, A., Hui, C.M., Matyjaszewski, K., Bockstaller, M.R., Durstock, M.F., Vaia, R.A., ACS Appl. Mater. Interfaces 6, 21500 (2014).CrossRef
Gao, B., Rozin, M.J., Tao, A.R., Nanoscale 5, 5677 (2013).CrossRef
Jayaraman, A., J. Polym. Sci. B Polym. Phys. 51, 524 (2013).CrossRef
Paniagua, S.A., Kim, Y., Henry, K., Kumar, R., Perry, J.W., Marder, S.R., ACS Appl. Mater. Interfaces 6, 3477 (2014).CrossRef
Batra, D., Seifert, S., Varela, L.M., Liu, A.C.Y., Firestone, M.A., Adv. Funct. Mater. 17 (8), 1279 (2007).CrossRef
Fu, S.Y., Feng, X.Q., Lauke, B., Mai, Y.W., Composites Part B 39 (6), 933 (2008).CrossRef
Nakatani, A.I., Chen, W., Schmidt, R.G., Gordon, G.V., Han, C.C., Polymer 42 (8), 3713 (2001).CrossRef
Mackay, M.E., Tuteja, A., Duxbury, P.M., Hawker, C.J., Van Horn, B., Guan, Z.B., Chen, G.H., Krishnan, R.S., Science 311 (5768), 1740 (2006).CrossRef
Gupta, S., Zhang, Q., Emerick, T., Balazas, A.C., Russell, T.P., Nat. Mater. 5, 229 (2006).CrossRef
Gam, S., Meth, J.S., Zane, S.G., Chi, C., Wood, B.A., Winey, K.I., Clarke, N., Composto, R.J., Soft Matter 8, 6512 (2012).CrossRef
Fox, T.G., Flory, P.J., J. Appl. Phys. 21 (6), 581 (1950).CrossRef
Giannelis, E.P., Adv. Mater. 8 (1), 29 (1996).CrossRef
Bharadwaj, R.K., Macromolecules 34 (26), 9189 (2001).CrossRef
Chen, Y., Jia, M., Xu, H., Cao, Y., Fan, H., J. Phys. Chem. C 118 (48), 28179 (2014).CrossRef
Merkel, T.C., Freeman, B.D., Spontak, R.J., He, Z., Pinnau, I., Meakin, P., Hill, A.J., Science 296 (5567), 519 (2002).CrossRef
Janes, D.W., Durning, C.J., Macromolecules 46 (3), 856 (2013).CrossRef
Utracki, L.A., J. Polym. Sci. B Polym. Phys. 46 (23), 2504 (2008).CrossRef
Kalathi, J.T., Grest, G.S., Kumar, S.K., Phys. Rev. Lett. 109 (19), 198301 (2012).CrossRef
Kim, B.J., Fredrickson, G.H., Hawker, C.J., Kramer, E.J., Langmuir 23 (14), 7804 (2007).CrossRef
Gam, S., Corlu, A., Chung, H.-J., Ohno, K., Hore, M.J.A., Composto, R.J., Soft Matter 7 (16), 7262 (2011).CrossRef
Maillard, D., Kumar, S.K., Rungta, A., Benicewicz, B.C., Prud’homme, R.E., Nano Lett. 11 (11), 4569 (2011).CrossRef
Price, A.D., Hur, S.M., Fredrickson, G.H., Frischneckt, A.L., Huber, D.L., Macromolecules 45 (1), 510 (2012).CrossRef
Shenhar, R., Norsten, T.B., Rotello, V.M., Adv. Mater. 17, 657 (2005).CrossRef
Kao, J., Thorkelsson, K., Bai, P., Rancatore, B.J., Xu, T., Chem. Soc. Rev. 42 (7), 2654 (2013).CrossRef
Sprenger, S., J. Compos. Mater. 49 (1), 53 (2015).CrossRef
Srivastava, S., Schaefer, J.L., Yang, Z., Tu, Z., Archer, L.A., Adv. Mater. 26 (2), 201 (2014).CrossRef
Murugadoss, A., Chattopadhyay, A., Nanotechnology 19, 015603 (2008).CrossRef
Habisreutinger, S.N., Leijtens, T., Eperon, G.E., Stranks, S.D., Nicholas, R.J., Snaith, H.J., Nano Lett. 14 (10), 5561 (2014).CrossRef
Cosgun, A., Fu, R., Jiang, W., Li, J., Song, J., Song, X., Zeng, H., J. Mater. Chem. C 3 (2), 257 (2015).CrossRef
Chen, Y., Dong, P.-F., Xu, J.-H., Luo, G.-S., Langmuir 30 (28), 8538 (2014).CrossRef
Mosconi, D., Mazzier, D., Silvestrini, S., Privitera, A., Marega, C., Franco, L., Moretto, A., ACS Nano 9 (4), 4156 (2015).CrossRef
Chuang, M.K., Chen, F.C., ACS Appl. Mater. Interfaces 7 (13), 7397 (2015).CrossRef
Yang, Y., Lin, X., Qing, J., Zhong, Z., Ou, J., Hu, C., Chen, X., Zhou, X., Chen, Y., Appl. Phys. Lett. 104 (12), 123302 (2014).CrossRef
Yen, C.-W., Hayden, S.C., Dreaden, E.C., Szymanski, P., El-Sayed, M.A., Nano Lett. 11 (9), 3821 (2011).CrossRef
Choi, H., Lee, J.-P., Ko, S.-J., Jung, J.-W., Park, H., Yoo, S., Park, O., Jeong, J.-R., Park, S., Kim, J.Y., Nano Lett. 13 (5), 2204 (2013).CrossRef
Martins, P., Costa, C.M., Botelho, G., Lanceros-Mendez, S., Barandiaran, J.M., Gutierrez, J., Mater. Chem. Phys. 131 (3), 698 (2012).CrossRef
Vasundhara, K., Mandal, B.P., Tyagi, A.K., RSC Adv. 5 (12), 8591 (2015).CrossRef
Hore, M.J.A., Composto, R.J., Macromolecules 47 (3), 875 (2014).CrossRef
Perez, J., Rodriguez-Gonzalez, B., Mulaney, P., Liz-Marzan, L.M., Adv. Funct. Mater. 15, 1065 (2005).CrossRef
Lin, Y., Wei, Q., Qian, G., Yao, L., Watkins, J.J., Macromolecules 45, 8665 (2012).CrossRef
Gao, B., Arya, G., Tao, A.R., Nat. Nanotechnol. 7, 433 (2012).CrossRef
Chen, H.W., Dong, W.L., Ge, J., Wang, C.H., Wu, X.D., Lu, W., Chen, L.W., Sci. Rep. 3, 1910 (2013).CrossRef
Wang, X.F., Xiang, Q.Y., Liu, B., Wang, L.J., Luo, T., Chen, D., Shen, G.Z., Sci. Rep. 3, 1441 (2013).
Chatterjee, D.K., Fong, L.S., Zhang, Y., Adv. Drug Deliv. Rev. 60 (15), 1627 (2008).CrossRef
Lee, S., Cummins, M.D., Willing, G.A., Firestone, M.A., J. Mater. Chem. 19 (43), 8092 (2009).CrossRef
Lee, S., Ringstrand, B.S., Stone, D.A., Firestone, M.A., ACS Appl. Mater. Interfaces 4 (5), 2311 (2012).CrossRef
Yang, G., Shen, P., Tan, K., Xia, Y., Microchim. Acta 181 (5–6), 607 (2014).CrossRef
Shirasaki, Y., Supran, G.J., Bawendi, M.G., Bulović, V., Nat. Photonics 7 (1), 13 (2013).CrossRef
Oh, Y., Islam, M.F., ACS Nano 9 (4), 4103 (2015).CrossRef
Zhang, H., Liu, Y., Yao, D., Yang, B., Chem. Soc. Rev. 41, 6066 (2012).CrossRef
Tokarev, I., Minko, S., Soft Matter 8 (22), 5980 (2012).CrossRef
Heo, K., Miesch, C., Emerick, T., Hayward, R.C., Nano Lett. 13, 5297 (2013).CrossRef
Zhao, Y., Thorkelsson, K., Mastronianni, A.J., Schilling, T., Luther, J.M., Rancatore, B.J., Matsunaga, K., Jinnnai, H., Wu, Y., Poulsen, D., Frechet, J.M., Alivisatos, A.P., Xu, T., Nat. Mater. 8, 979 (2009).CrossRef
Stuart, M.A.C., Huck, W.T.S., Genzer, J., Muller, M., Ober, C., Stamm, M., Sukhorukov, G.B., Szleifer, I., Tsukruk, V.V., Urban, M., Winnik, F., Zauscher, S., Luzinov, I., Minko, S., Nat. Mater. 9, 101 (2010).CrossRef

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 71
Total number of PDF views: 181 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 11th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Greater than the sum: Synergy and emergent properties in nanoparticle–polymer composites
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Greater than the sum: Synergy and emergent properties in nanoparticle–polymer composites
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Greater than the sum: Synergy and emergent properties in nanoparticle–polymer composites
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *