Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-9pqtr Total loading time: 4.766 Render date: 2021-04-15T10:57:42.055Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Article contents

Energy materials for transient power sources

Published online by Cambridge University Press:  10 February 2020

Xiaoteng Jia
Affiliation:
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, China; xtjia@jlu.edu.cn
Caiyun Wang
Affiliation:
Intelligent Polymer Research Institute/ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Australia; caiyun@uow.edu.au
Chong-Yong Lee
Affiliation:
Intelligent Polymer Research Institute/ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Australia; cylee@uow.edu.au
Changchun Yu
Affiliation:
School of Ophthalmology and Optometry, Wenzhou Medical University, China; cy470@uowmail.edu.au
Gordon G. Wallace
Affiliation:
ARC Centre of Excellence for Electromaterials Science, Australian National Fabrication Facility (Materials Node), and Intelligent Polymer Research Institute, Australia; gwallace@uow.edu.au
Get access

Abstract

Transient energy supply remains one of the key challenges limiting the development of transient implantable medical devices for monitoring, diagnosis, and treatment of diseases within a predetermined time frame. A key feature of such devices is their controllable degradation during service life. An on-board transient energy supply with predictable performance over time is required to drive transient electronics. In this article, we present recent advances in the development of materials for biodegradable energy-storage devices (batteries and supercapacitors) and biodegradable energy-harvesting systems (enzymatic biofuel cells and triboelectric nanogenerators). Future perspectives, challenges, and opportunities related to energy materials for transient power sources will also be summarized.

Type
Transient Electronic Devices
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below.

References

Li, R., Wang, L., Kong, D., Yin, L., Bioact. Mater. 3, 322 (2018).CrossRefGoogle Scholar
Bettinger, C.J., Trends Biotechnol . 33, 575 (2015).CrossRefGoogle Scholar
Kim, A., Ochoa, M., Rahimi, R., Ziaie, B., IEEE Access 3, 89 (2015).CrossRefGoogle Scholar
Stauss, S., Honma, I., Bull. Chem. Soc. Jpn. 91, 492 (2018).CrossRefGoogle Scholar
Kang, S.-K., Koo, J., Lee, Y.K., Rogers, J.A., Acc. Chem. Res. 51, 988 (2018).CrossRefGoogle Scholar
Cha, G.D., Kang, D., Lee, J., Kim, D.-H., Adv. Healthc. Mater. 8, 1801660 (2019).CrossRefGoogle Scholar
Yu, X., Shou, W., Mahajan, B.K., Huang, X., Pan, H., Adv. Mater. 30, 1707624 (2018).CrossRefGoogle Scholar
Mackay, R.S., Jacobson, B., Nature 179, 1239 (1957).CrossRefGoogle Scholar
Pedersen, P.B., Vilmann, P., Bar-Shalom, D., Müllertz, A., Baldursdottir, S., Eur. J. Pharm. Biopharm. 85, 958 (2013).CrossRefGoogle Scholar
Yin, L., Huang, X., Xu, H., Zhang, Y., Lam, J., Cheng, J., Rogers, J.A., Adv. Mater. 26, 3879 (2014).CrossRefGoogle Scholar
Huang, X., Wang, D., Yuan, Z., Xie, W., Wu, Y., Li, R., Zhao, Y., Luo, D., Cen, L., Chen, B., Wu, H., Xu, H., Sheng, X., Zhang, M., Zhao, L., Yin, L., Small 14, 1800994 (2018).CrossRefGoogle ScholarPubMed
Tsang, M., Armutlulu, A., Martinez, A.W., Allen, S.A.B., Allen, M.G., Microsyst. Nanoeng. 1, 15024 (2015).CrossRefGoogle Scholar
Tsang, M., Armutlulu, A., Herrault, F., Shafer, R.H., Allen, S.A.B., Allen, M.G., J. Microelectromech. Syst. 23, 1281 (2014).CrossRefGoogle Scholar
Witte, F., Acta Biomater . 6, 1680 (2010).CrossRefGoogle Scholar
Kong, Y., Wang, C., Yang, Y., Too, C.O., Wallace, G.G., Synth. Met. 162, 584 (2012).CrossRefGoogle Scholar
Yu, C., Wang, C., Liu, X., Jia, X., Naficy, S., Shu, K., Forsyth, M., Wallace, G.G., Adv. Mater. 28, 9349 (2016).CrossRefGoogle ScholarPubMed
Jia, X., Wang, C., Zhao, C., Ge, Y., Wallace, G.G., Adv. Funct. Mater. 26, 1454 (2016).CrossRefGoogle Scholar
Jia, X., Wang, C., Ranganathan, V., Napier, B., Yu, C., Chao, Y., Forsyth, M., Omenetto, F.G., MacFarlane, D.R., Wallace, G.G., ACS Energy Lett . 2, 831 (2017).CrossRefGoogle Scholar
Jia, X., Yang, Y., Wang, C., Zhao, C., Vijayaraghavan, R., MacFarlane, D.R., Forsyth, M., Wallace, G.G., ACS Appl. Mater. Interfaces 6, 21110 (2014).CrossRefGoogle Scholar
Jia, X., Ge, Y., Shao, L., Wang, C., Wallace, G.G., ACS Sustain. Chem. Eng. 7, 14321 (2019).CrossRefGoogle Scholar
Kim, Y.J., Wu, W., Chun, S.-E., Whitacre, J.F., Bettinger, C.J., Proc. Natl. Acad. Sci. U.S.A. 110, 20912 (2013).CrossRefGoogle Scholar
Kim, Y.J., Khetan, A., Wu, W., Chun, S.-E., Viswanathan, V., Whitacre, J.F., Bettinger, C.J., Adv. Mater. 28, 3173 (2016).CrossRefGoogle ScholarPubMed
Kim, Y.J., Wu, W., Chun, S.-E., Whitacre, J.F., Bettinger, C.J., Adv. Mater. 26, 6572 (2014).CrossRefGoogle Scholar
Robinson, D.L., Hermans, A., Seipel, A.T., Wightman, R.M., Chem. Rev. 108, 2554 (2008).CrossRefGoogle Scholar
Milroy, C.A., Manthiram, A., ACS Energy Lett . 1, 672 (2016).CrossRefGoogle Scholar
Sun, T., Li, Z.-j., Wang, H.-g., Bao, D., Meng, F.-I., Zhang, X.-b., Angew. Chem. Int. Ed. Engl. 55, 10662 (2016).CrossRefGoogle Scholar
Zhang, L.L., Zhao, X.S., Chem. Soc. Rev. 38, 2520 (2009).CrossRefGoogle Scholar
He, S.S., Hu, Y.J., Wan, J.X., Gao, Q., Wang, Y.H., Xie, S.L., Qiu, L.B., Wang, C.C., Zheng, G.F., Wang, B.J., Peng, H.S., Carbon 122, 162 (2017).CrossRefGoogle Scholar
Lee, G., Kang, S.-K., Won, S.M., Gutruf, P., Jeong, Y.R., Koo, J., Lee, S.-S., Rogers, J.A., Ha, J.S., Adv. Energy Mater. 7, 1700157 (2017).CrossRefGoogle Scholar
Li, H., Zhao, C., Wang, X., Meng, J., Zou, Y., Noreen, S., Zhao, L., Liu, Z., Ouyang, H., Tan, P., Yu, M., Fan, Y., Wang, Z.L., Li, Z., Adv. Sci. 6, 1801625 (2019).CrossRefGoogle Scholar
Kumar, P., Di Mauro, E., Zhang, S., Pezzella, A., Soavi, F., Santato, C., Cicoira, F., J. Mater. Chem. C 4, 9516 (2016).CrossRefGoogle Scholar
Di Mauro, E., Xu, R., Soliveri, G., Santato, C., MRS Commun. 7, 141 (2017).CrossRefGoogle Scholar
Colherinhas, G., Malaspina, T., Fileti, E.E., ACS Omega 3, 13869 (2018).CrossRefGoogle Scholar
Landi, G., Sorrentino, A., Fedi, F., Neitzert, H.C., Iannace, S., Nano Energy 17, 348 (2015).CrossRefGoogle Scholar
Mosa, I.M., Pattammattel, A., Kadimisetty, K., Pande, P., El-Kady, M.F., Bishop, G.W., Novak, M., Kaner, R.B., Basu, A.K., Kumar, C.V., Rusling, J.F., Adv. Energy Mater. 7, 1700358 (2017).CrossRefGoogle Scholar
Kim, J., Jeerapan, I., Ciui, B., Hartel, M.C., Martin, A., Wang, J., Adv. Healthc. Mater. 6, 1700770 (2017).CrossRefGoogle Scholar
Wang, X., Xu, W., Chatterjee, P., Lv, C., Popovich, J., Song, Z., Dai, L., Kalani, M.Y.S., Haydel, S.E., Jiang, H., Adv. Mater. Technol. 1, 1600059 (2016).CrossRefGoogle Scholar
Katz, E., MacVittie, K., Energy Environ. Sci. 6, 2791 (2013).CrossRefGoogle Scholar
Mano, N., Mao, F., Heller, A., J. Am. Chem. Soc. 125, 6588 (2003).CrossRefGoogle Scholar
Cinquin, P., Gondran, C., Giroud, F., Mazabrard, S., Pellissier, A., Boucher, F., Alcaraz, J.-P., Gorgy, K., Lenouvel, F., Mathé, S., Porcu, P., Cosnier, S., PLoS One 5, e10476 (2010).CrossRefGoogle Scholar
Cosnier, S., Le Goff, A., Holzinger, M., Electrochem. Commun. 38, 19 (2014).CrossRefGoogle Scholar
Sales, F.C.P.F., Iost, R.M., Martins, M.V.A., Almeida, M.C., Crespilho, F.N., Lab Chip 13, 468 (2013).CrossRefGoogle Scholar
Rasmussen, M., Ritzmann, R.E., Lee, I., Pollack, A.J., Scherson, D., J. Am. Chem. Soc. 134, 1458 (2012).CrossRefGoogle Scholar
Szczupak, A., Halámek, J., Halámková, L., Bocharova, V., Alfonta, L., Katz, E., Energy Environ. Sci. 5, 8891 (2012).CrossRefGoogle Scholar
Halámková, L., Halámek, J., Bocharova, V., Szczupak, A., Alfonta, L., Katz, E., J. Am. Chem. Soc. 134, 5040 (2012).CrossRefGoogle Scholar
MacVittie, K., Halámek, J., Halámková, L., Southcott, M., Jemison, W.D., Lobel, R., Katz, E., Energy Environ. Sci. 6, 81 (2013).CrossRefGoogle Scholar
Gross, A.J., Holzinger, M., Cosnier, S., Energy Environ. Sci. 11, 1670 (2018).CrossRefGoogle Scholar
Agnès, C., Holzinger, M., Le Goff, A., Reuillard, B., Elouarzaki, K., Tingry, S., Cosnier, S., Energy Environ. Sci. 7, 1884 (2014).CrossRefGoogle Scholar
Zebda, A., Alcaraz, J.-P., Vadgama, P., Shleev, S., Minteer, S.D., Boucher, F., Cinquin, P., Martin, D.K., Bioelectrochemistry 124, 57 (2018).CrossRefGoogle Scholar
Zheng, Q., Shi, B., Li, Z., Wang, Z.L., Adv. Sci. 4, 1700029 (2017).CrossRefGoogle Scholar
Zheng, Q., Zou, Y., Zhang, Y., Liu, Z., Shi, B., Wang, X., Jin, Y., Ouyang, H., Li, Z., Wang, Z.L., Sci. Adv. 2, e1501478 (2016).CrossRefGoogle Scholar
Jiang, W., Li, H., Liu, Z., Li, Z., Tian, J., Shi, B., Zou, Y., Ouyang, H., Zhao, C., Zhao, L., Sun, R., Zheng, H., Fan, Y., Wang, Z.L., Li, Z., Adv. Mater. 30, 1801895 (2018).CrossRefGoogle Scholar
Pan, R., Xuan, W., Chen, J., Dong, S., Jin, H., Wang, X., Li, H., Luo, J., Nano Energy 45, 193 (2018).CrossRefGoogle Scholar
Wang, R., Gao, S., Yang, Z., Li, Y., Chen, W., Wu, B., Wu, W., Adv. Mater. 30, 1706267 (2018).CrossRefGoogle Scholar

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 39
Total number of PDF views: 200 *
View data table for this chart

* Views captured on Cambridge Core between 10th February 2020 - 15th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Energy materials for transient power sources
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Energy materials for transient power sources
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Energy materials for transient power sources
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *