Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-n7x5d Total loading time: 0.236 Render date: 2021-12-06T22:00:51.273Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Article contents

Electronic Structure and Dynamics at Organic Donor/Acceptor Interfaces

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

We present our understanding of the electronic energy landscape and dynamics of charge separation at organic donor/acceptor interfaces. The organic/organic interface serves as a valuable point of reference and plays an important role in emerging electronic and optoelectronic applications, particularly organic photovoltaics (OPVs). The key issue on electronic structure at organic donor/acceptor interfaces is the difference in the lowest unoccupied molecular orbitals or that in the highest occupied molecular orbitals. This difference represents an energy gain needed to overcome the exciton binding energy in a charge-separation process in OPV. A sufficiently large energy gain favors the formation of charge transfer (CT) states that are energetically close to the charge-separation state. At an organic donor/acceptor interface in an OPV device, these high-energy CT states, also called hot CT excitons, are necessary intermediates in a successful charge-separation process.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Tang, C.W., Appl. Phys. Lett. 48, 183 (1986).CrossRefGoogle Scholar
2.Thompson, B.C., Fréchet, J.M.J., Angew. Chem. Int. Ed. 47, 58 (2008).CrossRefGoogle Scholar
3.Clarke, T.M., Durrant, J.R., Chem. Rev. (January 11, 2010), DOI: 10.1021/cr900271s.Google Scholar
4.Brédas, J.-L., Norton, J.E., Cornil, J., Coropceanu, V., Acc. Chem. Res. 42, 1691 (2009).CrossRefGoogle Scholar
5.Heimel, G., Salzmann, I., Duhm, S., Rabe, J.P., Koch, N., Adv. Funct. Mater. 19, 3874 (2009).CrossRefGoogle Scholar
6.Duhm, S., Salzmann, I., Heimel, G., Oehzelt, M., Haase, A., Johnson, R.L., Rabe, J.P., Koch, N., Appl. Phys. Lett. 94, 033304 (2009).CrossRefGoogle Scholar
7.Onsager, L., Phys. Rev. 54, 554 (1938).CrossRefGoogle Scholar
8.Halls, J.J.M., Walsh, C.A., Greenham, N.C., Marseglia, E.A., Friend, R.H., Moratti, S.C., Holmes, A.B., Nature 376, 6540 (1995).CrossRefGoogle Scholar
9.Rand, B.P., Burk, D.P., Forrest, S.R., Phys. Rev. B 75, 115327 (2007).CrossRefGoogle Scholar
10.Brumbach, M., Placencia, D., Armstrong, N.R., J. Phys. Chem. 112, 3142 (2008).Google Scholar
11.Brabec, C.J., Cravino, A., Meissner, D., Sariciftci, N.S., Fromherz, T., Rispens, M.T., Sanchez, L., Hummelen, J.C., Adv. Funct. Mater. 11, 374 (2001).3.0.CO;2-W>CrossRefGoogle Scholar
12.Gadisa, A., Svensson, M., Andersson, M.R., Inganas, O., Appl. Phys. Lett. 84, 1609 (2004).CrossRefGoogle Scholar
13.Scharber, M.C., Muhlbacher, D., Koppe, M., Denk, P., Waldauf, C., Heeger, A.J., Brabec, C.J., Adv. Mater. 18, 789 (2006).CrossRefGoogle Scholar
14.Rajagopal, A., Wu, C., Kahn, A., J. Appl. Phys. 83, 2649 (1998).CrossRefGoogle Scholar
15.Schlaf, R., Parkinson, B.A., Lee, P.A., Nebesny, K.W., Armstrong, N.R., J. Phys. Chem. B 103, 2984 (1999).CrossRefGoogle Scholar
16.Zhao, W., Kahn, A., J. Appl. Phys. 105, 123711 (2009).CrossRefGoogle Scholar
17.Vazquez, H., Gao, W., Flores, F., Kahn, A., Phys. Rev. B 71, 041306 (2005).CrossRefGoogle Scholar
18.Verlaak, S., Beljonne, D., Cheyns, D., Rolin, C., Linares, M., Castet, F., Cornil, J., Heremans, P., Adv. Funct. Mater. 19, 3809 (2009).CrossRefGoogle Scholar
19.Hwang, J., Wan, A., Kahn, A., Mater. Sci. Eng. R 64, 1 (2009).CrossRefGoogle Scholar
20.Ishii, H., Seki, K., IEEE Trans. Electron Devices 44, 1295 (1997).CrossRefGoogle Scholar
21.Hill, I.G., Rajagopal, A., Kahn, A., Hu, Y., Appl. Phys. Lett. 73, 662 (1998).CrossRefGoogle Scholar
22.Vazquez, H., Oszwaldowski, R., Pou, P., Ortega, J., Perez, R., Flores, F., Kahn, A., Euro. Phys. Lett. 65, 802 (2004).CrossRefGoogle Scholar
23.Ishii, H., Sugiyama, K., Ito, E., Seki, K., Adv. Mater. 11, 605 (1999).3.0.CO;2-Q>CrossRefGoogle Scholar
24.Bagus, P., Staemmler, V., Wöll, C., Phys. Rev. Lett. 89, 096104 (2002).CrossRefGoogle Scholar
25.Shen, C., Hill, I.G., Kahn, A., Schwartz, J., J. Am. Chem. Soc. 122, 5391 (2000).CrossRefGoogle Scholar
26.Davies, J. H., in The Physics of Low-Dimensional Semiconductors, Cambridge University Press, 1998, pp. 8687.Google Scholar
27.Vazquez, H., Gao, W., Flores, F., Kahn, A., Phys. Rev. B 71, 041306 (2005).CrossRefGoogle Scholar
28.Kahn, A., Zhao, W., Gao, W., Vazquez, H., Flores, F., Chem. Phys. 325, 129 (2006).CrossRefGoogle Scholar
29.Deibel, C., Mack, D., Gorenflot, J., Schöll, A., Krause, S., Reinert, F., Rauh, D., Dyakonov, V., Phys. Rev. B 81, 085202 (2010).CrossRefGoogle Scholar
30.Osikowicz, W., de Jong, M.P., Salaneck, W.R., Adv. Mat. 19, 4213 (2007).CrossRefGoogle Scholar
31.Zhang, F.J., Vollmer, A., Zhang, J., Xu, Z., Rabe, J.P., Koch, N., Org. Electron. 8, 606 (2007).CrossRefGoogle Scholar
32.Hall, J.J.M., Cornil, J., dos Santos, D.A., Hwang, D.-H., Holmes, A.B., Brédas, J.L., Friend, R.H., Phys. Rev. B 60, 5721 (1999).CrossRefGoogle Scholar
33.Morteani, A.C., Dhoot, A.S., Kim, J.-S., Silva, C., Greenham, N.C., Murphy, C., Moons, E., Ciná, S., Burroughes, J.H., Friend, R.H., Adv. Mater. 15, 1708 (2003).CrossRefGoogle Scholar
34.Müller, J.G., Lupton, J.M., Feldmann, J., Lemmer, U., Scharber, M.C., Sariciftci, N.S., Brabec, C.J., Scherf, U., Phys. Rev. B 72, 195208 (2005).CrossRefGoogle Scholar
35.Goris, L., Poruba, A., Hod′ákova, L., Vaněček, M., Haenen, K., Nesládek, M., Wagner, P., Vanderzande, D., De Schepper, L., Manca, J.V., Appl. Phys. Lett. 88, 052113 (2006).CrossRefGoogle Scholar
36.Hallermann, M., Haneder, S., Da Como, E., Appl. Phys. Lett. 93, 053307 (2008).CrossRefGoogle Scholar
37.Drori, T., Sheng, C.-X., Ndobe, A., Singh, S., Holt, J., Vardeny, Z.V., Phys. Rev. Lett. 101, 037401 (2008).CrossRefGoogle Scholar
38.Yokoyama, M., Endo, Y., Mikawa, H., Chem. Phys. Lett. 34, 597 (1975).CrossRefGoogle Scholar
39.Yokoyama, M., Endo, Y., Matsubara, A., Mikawa, H., J. Chem. Phys. 75, 3006 (1981).CrossRefGoogle Scholar
40.Morteani, A.C., Sreearunothai, P., Hertz, L.M., Friend, R.H., Silva, C., Phys. Rev. Lett. 92, 247402 (2004).CrossRefGoogle Scholar
41.Mihailetchi, V.D., Koster, L.J.A., Hummelen, J.C., Blom, P.W.M., Phys. Rev. Lett. 93, 216601 (2004).CrossRefGoogle Scholar
42.Arkhipov, V.I., Emelianova, E.V., Bässler, H., Phys. Rev. Lett. 82, 1321 (1999).CrossRefGoogle Scholar
43.Müller, J.G., Lemmer, U., Feldmann, J., Scherf, U., Phys. Rev. Lett. 88, 147401 (2002).CrossRefGoogle Scholar
44.Muntwiler, M., Yang, Q., Tisdale, W.A., Zhu, X.-Y., Phys. Rev. Lett. 101, 196403 (2008).CrossRefGoogle Scholar
45.Yang, Q., Muntwiler, M., Zhu, X.-Y., Phys. Rev. B 80, 115214 (2009).CrossRefGoogle Scholar
46.Zhu, X.-Y., Yang, Q., Muntwiler, M., Acc. Chem. Res. 42, 1779 (2009).CrossRefGoogle Scholar
47.Hwang, I.-W., Moses, D., Heeger, A.J., J. Phys. Chem. C 112, 4350 (2008).CrossRefGoogle Scholar
48.Pensack, R.D., Asbury, J.B., J. Am. Chem. Soc. 131, 15986 (2009).CrossRefGoogle Scholar
49.Arkhipov, V.I., Heremans, H.P., Bässler, H., Appl. Phys. Lett. 82, 4605 (2003).CrossRefGoogle Scholar
50.Kawatsu, T., Coropceanu, V., Ye, A., Brédas, J.-L., J. Phys. Chem. C 112, 3429 (2008).CrossRefGoogle Scholar
51.Veldman, D., Meskers, S.C.J., Janssen, R.A.J., Adv. Funct. Mater. 19, 1939 (2009).CrossRefGoogle Scholar
52.Deibel, C., Strobel, T., Dyakonov, V., Phys. Rev. Lett. 103, 036402 (2009).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Electronic Structure and Dynamics at Organic Donor/Acceptor Interfaces
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Electronic Structure and Dynamics at Organic Donor/Acceptor Interfaces
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Electronic Structure and Dynamics at Organic Donor/Acceptor Interfaces
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *