Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-25T02:43:23.403Z Has data issue: false hasContentIssue false

Electronic Ceramic Thin Films: Trends in Research and Development

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Electronic ceramic materials research is one of the fastest growing, most highly publicized areas of materials science. Subjects receiving considerable attention include high temperature superconductors, multilayer ceramic composites for high density microelectronics packaging, and ferroelectric electro-optic thin films. A complete review of all aspects of electronic ceramics research is beyond the scope of this article, which will focus on two general topics whose development is representative of recent contributions to the field. These two areas are synthesis and characterization of electronic ceramic films,1 and controlled use of low level dopants (1,000 ppm or less) in bulk polycrystalline ceramics, thin films, and single crystals to achieve desired properties. Perspective of the progress in ceramic film development is given by a review of single-crystal synthesis and properties.

Several examples of the impact that low level dopants and thin film synthesis have on electronic ceramics development are presented. Dopant concentrations of 1,000 ppm or less can have a dramatic effect on microstructural, optical, and electrical properties. For example, a decrease in aluminum content of 150 ppm resulted in an increase in grain size from 1 to 25 microns in otherwise identical ZnO varistors. Background aluminum concentrations for these varistors were less than 10 ppm. In another example, the photorefractive effect, the change in refractive index with optical light intensity, has been shown to be altered by orders of magnitude with ppm doping levels in ferroelectric electro-optic materials.

Several electronic ceramic devices have recently been developed due to improvements in ceramic film processing. Examples of these devices include: 1. multilayer PZT transformers, which allow fabrication of complex monolithic passive multicom-ponent networks, 2. liquid cooled multilayer ceramic substrates, with 400×800 micron liquid transfer capillaries integrated into the multilayer structure via ceramic processing techniques for high density VLSI packaging, and 3. ferroelectric electrooptic thin films that are compatible with silicon or III-V technology. For all the above applications, synthesis of electronic ceramic materials into high purity films is essential.

Type
Ceramics
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Adachi, H., Mitsyu, T., Yamazaki, O., and Wasa, K., J. Appl. Phys., 60 (2), (1986) p. 736741.CrossRefGoogle Scholar
2.Kimball, K.M. and Doughty, D.H., Sandia Report No. SAND86-0713 (1987).Google Scholar
3.Klein, M.B. and Schwartz, R.N., J. Opt. Soc. Am. B, 3 (2), (1986) p. 293305.CrossRefGoogle Scholar
4.Tuttle, B., Voigt, J., Binasiewicz, E., and Kimball, K., Sandia Report No. SAND87-1824 (1987).Google Scholar
5.Glass, A.M., Opt. Eng. 17 (6), (1978) p. 470479.CrossRefGoogle Scholar
6.Newnham, R.E., presented at the 1987 Annual Meeting of the American Ceramic Society, Pittsburgh, PA, Orton Memorial Lecture, 1987 (unpublished).Google Scholar
7.Tscuchiya, H. and Fukami, T., Ferroelectrics 63 (1985) p. 299308.CrossRefGoogle Scholar
8.Kishimoto, T. and Ohsaki, T., IEEE Trans. Comp. Hybrids and Man. Tech., CHMT-9 (4) (1986) p. 328335.CrossRefGoogle Scholar
9.Holman, R., Johnson, L. Althouse, and Skinner, D., in Proceedings of the Sixth IEEE Int. Symp. on Appl. of Ferroelectrics, (1986) p. 3241.Google Scholar
10.Yariv, A., Introduction to Optoelectronics (Holt, Rinehart and Winston, Inc., New York, 1971) p. 230245.Google Scholar
11.Wu, E., Ratto, J., Oliver, J., and Neurgaonkar, R., in Proceedings of the Sixth IEEE Int. Symp. on Appl. of Ferroelectrics, (1986) p. 478481.Google Scholar
12.Rytz, D. and Scheel, H., J. Cryst. Growths 59, (1982) p. 468484.CrossRefGoogle Scholar
13.Baumert, J.C., Walther, C., Buchmann, P., Kaufmann, H., Melchior, H., and Gunter, P., Appl. Phys. Lett. 46 (11) (1985) p. 1018.CrossRefGoogle Scholar
14.Khachaturyan, O. and Madoyan, R., Cryst. Res. and Tech. 19 (4) (1984) p. 461466.CrossRefGoogle Scholar
15.Bohac, P., Proc. Sixth Intl. Mtg. on Ferroelectricity, Jpn. J. of Appl. Phys. 24, Supplement 24-2 (1985) p. 613615.CrossRefGoogle Scholar
16.Neurgaonkar, R.R. and Cory, W.K., J. Opt. Soc. Am. 3 (2), (1986) p. 274.CrossRefGoogle Scholar
17.Eknoyan, O., Bulmer, C., Taylor, H., Burns, W., Greenblatt, A., Beach, L., and Neurgaonkar, R., Paper THBB1 (Integrated and Guide-Wave Optics Conference, 1986).Google Scholar
18.Antsigin, V.D., Egorov, W.M., Kotsov, E.G., Malinovsky, V.K., and Sterelyukhina, L.N., Ferroelectrics 63, (1985) p. 235242.CrossRefGoogle Scholar
19.Quek, H.M. and Yan, M.F., Ferroelectrics 74 (1987) p. 95108.CrossRefGoogle Scholar
20.Hirano, S. and Kato, K., Am. Ceram. Soc. Bull 66 (3) (1987) p. 547.Google Scholar
21.Griffel, W., Paper WP6 (OSA Meeting, Washington, DC, 1985).Google Scholar
22.Kondo, S., Sugii, K., Miyazawa, S., and Uehara, S., J. Cryst. Growth 46 (1979) p. 314322.CrossRefGoogle Scholar
23.Haertling, G. and Land, C., J. Am. Ceram. Soc. 54 (1) (1971) p. 1.CrossRefGoogle Scholar
24.Ishida, M., Matsunami, H., and Tanaka, T., Appl. Phys. Lett. 31 (7) (1977) p. 433434.CrossRefGoogle Scholar
25.Ishida, M., Tsuji, S., Kimura, K., Matsunami, H., and Tanaka, T., J. Cryst. Growth 45, (1978) p. 393398.CrossRefGoogle Scholar
26.Ishida, M., Matsunami, H., and Tanaka, T., J. Appl. Phys. 48 (1977) p. 951.CrossRefGoogle Scholar
27.Kawaguchi, T., Adachi, H., Setsume, K., Yamazaki, O., and Wasa, K., Appl. Optics 23 (13) (1984) p. 21872191.CrossRefGoogle Scholar
28.Gurkovich, S. and Blum, J., Ultrastructure Processing of Ceramics, Glasses and Composites (John Wiley and Sons, New York, 1984) p. 152.Google Scholar
29.Budd, K., Dey, S., and Payne, D., Br. Ceram. Proc. 36, p. 107120.Google Scholar
30.Ducharme, S. and Feinberg, J., J. Opt. Soc. Am. B 3 (1986) p. 283291.CrossRefGoogle Scholar
31.Schunemann, P., Tuller, H., and Jensen, H., Am. Ceram. Soc. Bull. 66 (3) (1987) p. 547.Google Scholar
32.Dosch, R., in Better Ceramics Through Chemistry, edited by Brinker, C.J., Clark, D.E., and Ulrich, D.R., (Mater. Res. Soc. Symp. Proc. 32, Elsevier, New York, 1984) p. 157161.Google Scholar
33.Xu, J., Shaikh, A., and Vest, R., Am. Ceram. Soc. Bull. 66 (3) (1987) p. 54.Google Scholar
34.Chaudhari, P., Koch, R., Laibowitz, R., McGuire, I., and Gambino, K., Phys. Rev. Lett. 58 (25) (1987) p. 26842686.CrossRefGoogle Scholar
35.Dinger, T., Worthington, T., Gallagher, W., and Sandstrom, R., Phys. Rev. Lett. 58 (25) (1987) p. 26872690.CrossRefGoogle Scholar
36.Moriwaki, K., Suzuki, M., Enomoto, Y., and Murakami, T., in High Temperature Superconductors, edited by Gubser, D.U. and Schluter, M. (Mater. Res. Soc. EA-11, Pittsburgh, PA, 1987) p. 8589.Google Scholar
37.Evetts, J., Somekh, R., Blamire, M., Barber, Z., Butler, K., James, J., Morris, G., Tomlinson, E., Schwarzenberger, A., and Stobbs, W., in High Temperature Superconductors, edited by Gubser, D.U. and Schluter, M. (Mater. Res. Soc. EA-11, Pittsburgh, PA, 1987) p. 227231.Google Scholar
38.Koch, R., Laibowitz, R., Chaudhari, P., Gambino, R., Clark, G., Marawich, A., and Umbach, C., in High Temperature Superconductors, edited by Gubser, D.U. and Schluter, M. (Mater. Res. Soc. EA-11, Pittsburgh, PA, 1987) p. 8184.Google Scholar
39.Dosch, R., Tuttle, B., and Brooks, R., J. Mater. Res. 1 (1), (1986) p. 9099.CrossRefGoogle Scholar
40.Haertling, G., in Ceramic Materials for Electronics, edited by Buchanan, R. (Marcel Dekker, Inc., New York, 1986) p. 160.Google Scholar