Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-21T00:46:57.805Z Has data issue: false hasContentIssue false

Combinatorial Methods for Investigations in Polymer Materials Science

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

We review recent advances in the development of combinatorial methods for polymer characterization. Applied to materials research, combinatorial methodologies allow efficient testing of structure–property hypotheses (fundamental characterization) as well as accelerated development of new materials (materials discovery). Recent advances in library preparation and high-throughput screening have extended combinatorial methods to a wide variety of phenomena encountered in polymer processing. We first present techniques for preparing continuous-gradient polymer “libraries” with controlled variations in temperature, composition, thickness, and substrate surface energy. These libraries are then used to characterize fundamental properties such as polymer-blend phase behavior, thin-film dewetting, block-copolymer order–disorder transitions, and cell interactions with surfaces of biocompatible polymers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Reddington, E., Sapienza, A., Gurau, B., Viswanathan, R., Sarangapani, S., Smotkin, E., and Mallouk, T., Science 280 (1998) p. 1735.CrossRefGoogle Scholar
2.Wang, J., Yoo, Y., Gao, C., Takeuchi, I., Sun, X.-D., Chang, H., Xiang, X.-D., and Schultz, P.G., Science 279 (1998) p. 1712.CrossRefGoogle Scholar
3.Sun, X.-D. and Xiang, X.-D., Appl. Phys. Lett. 72 (1998) p. 525.CrossRefGoogle Scholar
4.Danielson, E., Devenney, M., Giaquinta, D.M., Golden, J.H., Haushalter, R.C., McFarland, E.W., Poojary, D.M., Reaves, C.M., Weinberg, W.H., and Wu, X.D., Science 279 (1998) p. 837.CrossRefGoogle Scholar
5.Jandeleit, B., Schaefer, D.J., Powers, T.S., Turner, H.W., and Weinberg, W.H., Angew. Chem., Int. Ed. Engl. 38 (1999) p. 2494.3.0.CO;2-#>CrossRefGoogle Scholar
6.Klein, J., Lehmann, C.W., Schmidt, H.-W., and Maier, W.F., Angew. Chem., Int. Ed. Engl. 37 (1998) p. 3369.3.0.CO;2-H>CrossRefGoogle Scholar
7.Brocchini, S., James, K., Tangpasuthadol, V., and Kohn, J., J. Am. Chem. Soc. 119 (1997) p. 4553.CrossRefGoogle Scholar
8.Brocchini, S., James, K., Tangpasuthadol, V., and Kohn, J., J. Biomed. Mater. Res. 42 (1998) p. 66.3.0.CO;2-M>CrossRefGoogle Scholar
9.Dickinson, T.A., Walt, D.R., White, J., and Kauer, J.S., Anal. Chem. 69 (1997) p. 3413.CrossRefGoogle Scholar
10.Newkome, G.R., Weis, C.D., Moorefield, C.N., Baker, G.R., Childs, B.J., and Epperson, J., Angew. Chem., Int. Ed. Engl. 37 (1998) p. 307.3.0.CO;2-L>CrossRefGoogle Scholar
11.Gravert, D.J., Datta, A., Wentworth, P., and Janda, K.D., J. Am. Chem. Soc. 120 (1998) p. 9481.CrossRefGoogle Scholar
12.Reynolds, C.H., J. Comb. Chem. 1 (1999) p. 297.CrossRefGoogle Scholar
13.Takeuchi, T., Fukuma, D., and Matsui, J., Anal. Chem. 71 (1999) p. 285.CrossRefGoogle Scholar
14.Schmitz, C., Posch, P., Thelakkat, M., and Schmidt, H.W., Macromol. Symp. 154 (2000) p. 209.3.0.CO;2-#>CrossRefGoogle Scholar
15.Gross, M., Muller, D.C., Nothofer, H.G., Sherf, U., Neher, D., Brauchle, C., and Meerholz, K., Nature 405 (2000) p. 661.CrossRefGoogle Scholar
16.Meredith, J.C., Karim, A., and Amis, E.J., Macromolecules 33 (2000) p. 5760.CrossRefGoogle Scholar
17.Meredith, J.C., Smith, A.P., Karim, A., and Amis, E.J., Macromolecules 33 (2000) p. 9747.CrossRefGoogle Scholar
18.Smith, A.P., Douglas, J., Meredith, J.C., Karim, A., and Amis, E.J., Phys. Rev. Lett. 87 (2001) p. 15503.CrossRefGoogle Scholar
19.Meredith, J.C., Karim, A., and Amis, E.J., in ACS Symposium Series: Combinatorial Approaches to Materials Development, edited by Malhotra, R. (American Chemical Society, Washington, DC, 2001).Google Scholar
20.Ashley, K., Meredith, J.C., Karim, A., and Raghavan, D., Polym. Commun. (2000) in press.Google Scholar
21.Liedberg, B. and Tengvall, P., Langmuir 11 (1995) p. 3821.CrossRefGoogle Scholar
22.Genzer, J. and Kramer, E.J., Europhys. Lett. 44 (1998) p. 180.CrossRefGoogle Scholar
23.Leal, L.G., Laminar Flow and Convective Transport Processes (Butterworth-Heinemann, Boston, 1992).Google Scholar
24.Meredith, J.C., Garcia, A., Tona, A., Karim, A., and Amis, E.J. (unpublished manuscript).Google Scholar
25.Bessey, O.A., Lowry, O.H., and Brock, M.J., J. Biol. Chem. 164 (1946) p. 321.CrossRefGoogle Scholar
26.Meredith, J.C. and Amis, E.J., Macromol. Chem. Phys. 200 (2000) p. 733.3.0.CO;2-5>CrossRefGoogle Scholar
27.Hasegawa, H. and Hashimoto, T., Macro-molecules 18 (1985) p. 589.CrossRefGoogle Scholar
28.Russell, T.P., Coulon, G., Deline, V.R., and Miller, D.C., Macromolecules 22 (1989) p. 4600.CrossRefGoogle Scholar
29.Fasolka, M.J. and Mayes, A.M., Annu. Rev. Mater. Res. 31 (2001) p. 323.CrossRefGoogle Scholar
30.Smith, A.P., Douglas, J., Meredith, J.C., Karim, A., and Amis, E.J., J. Polym. Sci., Part B: Polym. Phys. 39 (2001) p. 2141.CrossRefGoogle Scholar
31.Schmitz, C., Thelakkat, M., and Schmidt, H.W., Adv. Mater. 11 (1999) p. 821.3.0.CO;2-6>CrossRefGoogle Scholar
32.Schmitz, C., Posch, P., Thelakkat, M., and Schmidt, H.W., Phys. Chem. Chem. Phys. 1 (1999) p. 1777.CrossRefGoogle Scholar