Hostname: page-component-84b7d79bbc-7nlkj Total loading time: 0 Render date: 2024-07-25T13:58:37.387Z Has data issue: false hasContentIssue false

Block-by-Block Deposition of Complex Oxide Films

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Since the discovery of superconductivity in layered cuprates there has been a strong desire to grow thin films of these materials in a so-called layer-by-layer manner, where each layer represents one atomic monolayer. There has been worldwide interest in this problem and numerous groups have invested time and equipment in an attempt, first, to grow the known materials using a sequential deposition technique so that the atomic monolayers are stacked artificially on top of one another in a sequence defined by the structure of the given unit cell, and second, to search for new stacking sequences of such atomic monolayers, thus making metastable compounds.

Understanding the growth of thin films using any deposition technique requires information about two fundamental processes, the nucleation of a crystal and its growth. Both are strongly affected by the three thermodynamic parameters, temperature, pressure, and chemical potential (composition), at the growth front. The third parameter, the surface composition from which the desired compound can nucleate and propagate, probably provides the greatest degree of freedom in the growth process. The compositional phase diagrams of most cuprates show that several phases can coexist with the superconducting phase at a certain temperature and pressure. This is also the main reason why a widely changing surface composition, such as that present during layer-by-layer or block-by-block deposition, still produces high-quality thin films.

Type
Crystal Engineering of High Tc-Related Oxide Films
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Bednorz, J.G. and Müller, K.A., Z. Phys. B 64 (1986) p. 189.CrossRefGoogle Scholar
2.Eckstein, J.N., Schlom, D.G., Hellman, E.S., von Dessoneck, K.E., Chen, Z.J., Webb, C., Turner, F., Harris, J.S. Jr., Beasley, M.R., and Geballe, T.G., J. Vac. Sci. Technol. B 7 (1989) p. 319; Fujita, J., Yoshitake, T., Igarashi, H., and Satoh, T., Appl. Phys. Lett. 56 (1990) p. 295; Fujita, J., Yoshitake, T., Igarashi, H., and Satoh, T., Appl. Phys. Lett. 56 (1990), p. 1469; Fujita, J., Yoshitake, T., Igarashi, H., and Satoh, T., Appl. Phys. Lett. 56 (1990), p. 1503; Tabata, H., Kawai, T., Kanai, M., Murata, O., and Kawai, S., Jpn. J. Appl. Phys. 28 (1989) p. 823; Koinuma, H., Nagata, H., Hashimoto, T., Tsukahara, T., Gonda, S., and Yoshimoto, M., in Advances in Superconductivity III, edited by Kajimura, K. and Hayakawa, H. (Springer-Verlag, Tokyo, 1991) p. 1135.CrossRefGoogle Scholar
3.Klemenz, C. and Scheel, H.J., J. Cryst. Growth 129 (1993) p. 421.CrossRefGoogle Scholar
4.Ahn, B.T., Lee, V.Y., Beyers, R., Gur, T.M., and Huggins, R.A., Physica C 167 (1990) p. 529.CrossRefGoogle Scholar
5.Locquet, J-P., Catana, A., Mächler, E., Gerber, C., and Bednorz, J.G., Appl. Phys. Lett. 64 (1994) p. 372.CrossRefGoogle Scholar
6.Hussey, B.W., Gupta, A., and Olsson, E., J. Appl. Phys. (1994) in print.Google Scholar
7.Locquet, J-P. and Mächler, E., J. Vac. Sci. Technol. A 10 (1992) p. 3100.CrossRefGoogle Scholar
8.Willmott, P.R., Felder, P., Lingenauer, M., Huber, J.R., Fritsch, E., Bidell, W., Berke, H., Mächler, E., Williams, E.J., Locquet, J-P., and Bednorz, J.G., in J. Vac. Sci. Technol A, in print.Google Scholar
9.Catana, A. and Locquet, J-P., J. Mater. Res. 8 (1993) p. 1373; A. Catana and J-P. Locquet, Appl. Surf. Sci. 65/66 (1993) p. 192.CrossRefGoogle Scholar
10.Jaccard, Y., Cretton, A., Williams, E.J., Locquet, J-P., Mächler, E., Schneider, T., Fischer, Ø., and Martinoli, P., Proc. SPIE Conf. on Oxide Superconductors and Nanoengineering, Los Angeles, California (1994) in press; Williams, E.J., Locquet, J-P., Cretton, A., Jaccard, Y., Mächler, E., Fischer, Ø., Martinoli, P., and Schneider, T., Inst. Phys. Conf. Ser. 138 (1994) p. 329; Williams, E.J., Proc. 13th Int. Congress on Electron Microscopy, Paris, France, July 1994, p. 987.Google Scholar
11.Locquet, J-P., Jaccard, Y., Cretton, A., Williams, E.J., Mächler, E., Schneider, T., Fischer, Ø., and Martinoli, P., preprint.Google Scholar
12.Locquet, J-P., Jaccard, Y., Gerber, C., and Mächler, E., Appl. Phys. Lett. 63 (1993) p. 1426.CrossRefGoogle Scholar
13.Ramesh, R., Inam, A., Hwang, D.M., Ravi, T.S., Sands, T., Xi, X.X., Wu, X.D., Li, Q., Venkatesan, T., and Kilaas, R., J. Mater. Res. 6 (1991) p. 2264; Wen, J.G., Traeholt, C., and Zandbergen, H.W., Physica C 205 (1993) p. 354.CrossRefGoogle Scholar
14.Frey, T., private communication. The analysis of the first RHEED oscillation period for the growth of ‘123’ reveals a thickness corresponding to 10 Å. For data see, for instance, Terashima, T., Shimura, K., Bando, Y., Matsuda, Y., Fujiyama, A., and Komiyama, S., Phys. Rev. Lett. 67 (1992) p. 1362; or Frey, T., Chi, C.C., Tsuei, C.C., Shaw, T., and Bozso, F., Phys. Rev. B 49 (1994) p. 3483.Google Scholar
15.Wen, J.G., private communication.Google Scholar
16.Basu, S.N., Carim, A.H., and Mitchell, T.E., J. Mater. Res. 6 (1991) p. 1823.CrossRefGoogle Scholar
17.Bardal, A. and Eibl, O., Physica C 216 (1993) p. 365.CrossRefGoogle Scholar