Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-28jzs Total loading time: 0.332 Render date: 2021-03-06T18:32:48.979Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Article contents

Advances in light-emitting metal-halide perovskite nanocrystals

Published online by Cambridge University Press:  16 June 2020

Liang-Jin Xu
Affiliation:
Department of Chemistry and Biochemistry, Florida State University, USA; lxu3@fsu.edu
Michael Worku
Affiliation:
Materials Science and Engineering Program, Florida State University, USA; mdw16@my.fsu.edu
Qingquan He
Affiliation:
Department of Chemistry and Biochemistry, Florida State University, USA; qhe@fsu.edu
Biwu Ma
Affiliation:
Department of Chemistry and Biochemistry, Florida State University, USA; bma@fsu.edu
Corresponding
Get access

Abstract

Metal-halide perovskites, in particular their nanocrystal forms, have emerged as a new generation of light-emitting materials with exceptional optical properties, including narrow emissions covering the whole visible region with high photoluminescence quantum efficiencies of up to near-unity. Remarkable progress has been achieved over the last few years in the areas of materials development and device integration. A variety of synthetic approaches have been established to precisely control the compositions and microstructures of metal-halide perovskite nanocrystals (NCs) with tunable bandgaps and emission colors. The use of metal-halide perovskite NCs as active materials for optoelectronic devices has been extensively explored. Here, we provide a brief overview of recent advances in the development and application of metal-halide perovskite NCs. From color tuning via ion exchange and manipulation of quantum size effects, to stability enhancement via surface passivation, new chemistry for materials development is discussed. In addition, processes in optoelectronic devices based on metal-halide perovskite NCs, in particular, light-emitting diodes and radiation detectors, will be introduced. Opportunities for future research in metal-halide perovskite NCs are provided as well.

Type
Halide Perovskite Opto- and Nanoelectronic Materials and Devices
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below.

References

Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T., J. Am. Chem. Soc. 131, 6050 (2009).CrossRefGoogle Scholar
Yin, W.-J., Shi, T., Yan, Y., Appl. Phys. Lett. 104, 063903 (2014).CrossRefGoogle Scholar
Miyata, A., Mitioglu, A., Plochocka, P., Portugall, O., Wang, J.T.-W., Stranks, S.D., Snaith, H.J., Nicholas, R.J., Nat. Phys. 11, 582 (2015).CrossRefGoogle Scholar
Huang, H., Polavarapu, L., Sichert, J.A., Susha, A.S., Urban, A.S., Rogach, A.L., NPG Asia Mater. 8, e328 (2016).CrossRefGoogle Scholar
Schmidt, L.C., Pertegás, A., González-Carrero, S., Malinkiewicz, O., Agouram, S., Mínguez Espallargas, G., Bolink, H.J., Galian, R.E., Pérez-Prieto, J., J. Am. Chem. Soc. 136, 850 (2014).CrossRefGoogle Scholar
Protesescu, L., Yakunin, S., Bodnarchuk, M.I., Krieg, F., Caputo, R., Hendon, C.H., Yang, R.X., Walsh, A., Kovalenko, M.V., Nano Lett. 15, 3692 (2015).CrossRefGoogle Scholar
Nedelcu, G., Protesescu, L., Yakunin, S., Bodnarchuk, M.I., Grotevent, M.J., Kovalenko, M.V., Nano Lett. 15, 5635 (2015).CrossRefGoogle Scholar
Uddin, M.A., Calabro, R.L., Kim, D.Y., Graham, K.R., Nanoscale 10, 16919 (2018).CrossRefGoogle Scholar
Akkerman, Q.A., D'Innocenzo, V., Accornero, S., Scarpellini, A., Petrozza, A., Prato, M., Manna, L., J. Am. Chem. Soc. 137, 10276 (2015).CrossRefGoogle Scholar
Yan, A., Guo, Y., Liu, C., Deng, Z., Zhao, X., Nanoscale Res. Lett. 13, 185 (2018).CrossRefGoogle Scholar
Liu, H., Liu, Z., Xu, W., Yang, L., Liu, Y., Yao, D., Zhang, D., Zhang, H., Yang, B., ACS Appl. Mater. Interfaces 11, 14256 (2019).CrossRefGoogle Scholar
Parobek, D., Dong, Y., Qiao, T., Rossi, D., Son, D.H., J. Am. Chem. Soc. 139, 4358 (2017).CrossRefGoogle Scholar
Yoon, Y.J., Lee, K.T., Lee, T.K., Kim, S.H., Shin, Y.S., Walker, B., Park, S.Y., Heo, J., Lee, J., Kwak, S.K., Kim, G.-H., Kim, J.Y., Joule 2, 2105 (2018).CrossRefGoogle Scholar
Xu, L.J., Worku, M., He, Q., Lin, H., Zhou, C., Chen, B., Lin, X., Xin, Y., Ma, B., J. Phys. Chem. Lett. 10, 5836 (2019).CrossRefGoogle Scholar
Akkerman, Q.A., Motti, S.G., Srimath Kandada, A.R., Mosconi, E., D'Innocenzo, V., Bertoni, G., Marras, S., Kamino, B.A., Miranda, L., De Angelis, F., Petrozza, A., Prato, M., Manna, L., J. Am. Chem. Soc. 138, 1010 (2016).CrossRefGoogle Scholar
Sichert, J.A., Tong, Y., Mutz, N., Vollmer, M., Fischer, S., Milowska, K.Z., García Cortadella, R., Nickel, B., Cardenas-Daw, C., Stolarczyk, J.K., Urban, A.S., Feldmann, J., Nano Lett. 15, 6521 (2015).Google Scholar
Yuan, Z., Shu, Y., Xin, Y., Ma, B., Chem. Commun. 52, 3887 (2016).CrossRefGoogle Scholar
Pan, A., He, B., Fan, X., Liu, Z., Urban, J.J., Alivisatos, A.P., He, L., Liu, Y., ACS Nano 10, 7943 (2016).CrossRefGoogle Scholar
Worku, M., Tian, Y., Zhou, C., Lin, H., Chaaban, M., Xu, L.-J., He, Q., Beery, D., Zhou, Y., Lin, X., Su, Y.-F., Xin, Y., Ma, B., Sci. Adv. 6, eaaz5961 (2020).CrossRefGoogle Scholar
Zhang, F., Zhong, H., Chen, C., Wu, X.-g., Hu, X., Huang, H., Han, J., Zou, B., Dong, Y., ACS Nano 9, 4533 (2015).CrossRefGoogle Scholar
Kim, Y., Yassitepe, E., Voznyy, O., Comin, R., Walters, G., Gong, X., Kanjanaboos, P., Nogueira, A.F., Sargent, E.H., ACS Appl. Mater. Interfaces 7, 25007 (2015).CrossRefGoogle ScholarPubMed
Wang, Y., He, J., Chen, H., Chen, J., Zhu, R., Ma, P., Towers, A., Lin, Y., Gesquiere, A.J., Wu, S.T., Dong, Y., Adv. Mater. 28, 10710 (2016).CrossRefGoogle ScholarPubMed
Yu, J.C., Lee, A.-Y., Kim, D.B., Jung, E.D., Kim, D.W., Song, M.H., Adv. Mater. Technol. 2, 1700003 (2017).CrossRefGoogle Scholar
Zhou, Q., Bai, Z., Lu, W.G., Wang, Y., Zou, B., Zhong, H., Adv. Mater. 28, 9163 (2016).CrossRefGoogle Scholar
Tian, Y., Zhou, C., Worku, M., Wang, X., Ling, Y., Gao, H., Zhou, Y., Miao, Y., Guan, J., Ma, B., Adv. Mater. 30, 1707093 (2018).CrossRefGoogle Scholar
Zhao, L., Yeh, Y.W., Tran, N.L., Wu, F., Xiao, Z., Kerner, R.A., Lin, Y.L., Scholes, G.D., Yao, N., Rand, B.P., ACS Nano 11, 3957 (2017).CrossRefGoogle Scholar
Lee, J.W., Choi, Y.J., Yang, J.M., Ham, S., Jeon, S.K., Lee, J.Y., Song, Y.H., Ji, E.K., Yoon, D.H., Seo, S., Shin, H., Han, G.S., Jung, H.S., Kim, D., Park, N.G., ACS Nano 11, 3311 (2017).CrossRefGoogle Scholar
Xu, L.J., Worku, M., Lin, H., Xu, Z., He, Q., Zhou, C., Zhang, H., Xin, Y., Lteif, S., Xue, J., Ma, B., J. Phys. Chem. Lett. 10, 5923 (2019).CrossRefGoogle Scholar
Almeida, G., Infante, I., Manna, L., Science 364, 833 (2019).CrossRefGoogle Scholar
Zhang, B.B., Yuan, S., Ma, J.P., Zhou, Y., Hou, J.S., Chen, X.Y., Zheng, W., Shen, H.B., Wang, X.C., Sun, B.Q., Bakr, O.M., Liao, L.S., Sun, H.T., J. Am. Chem. Soc. 141, 15423 (2019).CrossRefGoogle Scholar
Krieg, F., Ochsenbein, S.T., Yakunin, S., ten Brinck, S., Aellen, P., Suess, A., Clerc, B., Guggisberg, D., Nazarenko, O., Shynkarenko, Y., Kumar, S., Shih, C.J., Infante, I., Kovalenko, M.V., ACS Energy Lett. 3, 641 (2018).CrossRefGoogle Scholar
Krieg, F., Ong, Q.K., Burian, M., Rainò, G., Naumenko, D., Amenitsch, H., Süess, A., Grotevent, M.J., Krumeich, F., Bodnarchuk, M.I., Shorubalko, I., Stellacci, F., Kovalenko, M.V., J. Am. Chem. Soc. 141, 19839 (2019).CrossRefGoogle Scholar
Ravi, V.K., Scheidt, R.A., Nag, A., Kuno, M., Kamat, P.V., ACS Energy Lett. 3, 1049 (2018).CrossRefGoogle Scholar
Quan, L.N., Quintero-Bermudez, R., Voznyy, O., Walters, G., Jain, A., Fan, J.Z., Zheng, X.L., Yang, Z.Y., Sargent, E.H., Adv. Mater. 29, 1605945 (2017).CrossRefGoogle Scholar
He, Y., Yoon, Y.J., Harn, Y.W., Biesold-McGee, G.V., Liang, S., Lin, C.H., Tsukruk, V.V., Thadhani, N., Kang, Z.T., Lin, Z.Q., Sci. Adv. 5, eaax4424 (2019).CrossRefGoogle Scholar
Liu, B., Altintas, Y., Wang, L., Shendre, S., Sharma, M., Sun, H., Mutlugun, E., Demir, H.V., Adv. Mater. 32, 1905824 (2019).CrossRefGoogle Scholar
Dirin, D.N., Benin, B.M., Yakunin, S., Krumeich, F., Raino, G., Frison, R., Kovalenko, M.V., ACS Nano 13, 11642 (2019).CrossRefGoogle Scholar
Cha, J.H., Noh, K., Yin, W., Lee, Y., Park, Y., Ahn, T.K., Mayoral, A., Kim, J., Jung, D.Y., Terasaki, O., J. Phys. Chem. Lett. 10, 2270 (2019).CrossRefGoogle Scholar
Pan, G.C., Bai, X., Yang, D.W., Chen, X., Jing, P.T., Qu, S.N., Zhang, L.J., Zhou, D.L., Zhu, J.Y., Xu, W., Dong, B., Song, H.W., Nano Lett. 17, 8005 (2017).CrossRefGoogle Scholar
Guvenc, C.M., Yalcinkaya, Y., Ozen, S., Sahin, H., Demir, M.M., J. Phys. Chem. C 123, 24865 (2019).CrossRefGoogle Scholar
Meyns, M., Peralvarez, M., Heuer-Jungemann, A., Hertog, W., Ibanez, M., Nafria, R., Genc, A., Arbiol, J., Kovalenko, M.V., Carreras, J., Cabot, A., Kanaras, A.G., ACS Appl. Mater. Interfaces 8, 19579 (2016).CrossRefGoogle Scholar
Huang, H., Chen, B., Wang, Z., Hung, T.F., Susha, A.S., Zhong, H., Rogach, A.L., Chem. Sci. 7, 5699 (2016).CrossRefGoogle Scholar
Chen, D., Fang, G., Chen, X., ACS Appl. Mater. Interfaces 9, 40477 (2017).CrossRefGoogle Scholar
Xuan, T., Yang, X., Lou, S., Huang, J., Liu, Y., Yu, J., Li, H., Wong, K.L., Wang, C., Wang, J., Nanoscale 9, 15286 (2017).CrossRefGoogle Scholar
Sun, C., Zhang, Y., Ruan, C., Yin, C., Wang, X., Wang, Y., Yu, W.W., Adv. Mater. 28, 10088 (2016).CrossRefGoogle Scholar
Yoon, H.C., Kang, H., Lee, S., Oh, J.H., Yang, H., Do, Y.R., ACS Appl. Mater. Interfaces 8, 18189 (2016).CrossRefGoogle Scholar
Zhou, Q., Bai, Z., Lu, W.G., Wang, Y., Zou, B., Zhong, H., Adv. Mater. 28, 9163 (2016).CrossRefGoogle Scholar
Cho, H., Jeong, S.-H., Park, M.-H., Kim, Y.-H., Wolf, C., Lee, C.-L., Heo, J.H., Sadhanala, A., Myoung, N., Yoo, S., Im, S.H., Friend, R.H., Lee, T.-W., Science 350, 1222 (2015).CrossRefGoogle Scholar
Xiao, Z.G., Kerner, R.A., Zhao, L.F., Tran, N.L., Lee, K.M., Koh, T.W., Scholes, G.D., Rand, B.P., Nat. Photonics 11, 108 (2017).CrossRefGoogle Scholar
Song, J., Li, J., Li, X., Xu, L., Dong, Y., Zeng, H., Adv. Mater. 27, 7162 (2015).CrossRefGoogle Scholar
Li, J., Xu, L., Wang, T., Song, J., Chen, J., Xue, J., Dong, Y., Cai, B., Shan, Q., Han, B., Adv. Mater. 29, 1603885 (2017).CrossRefGoogle Scholar
Song, J., Fang, T., Li, J., Xu, L., Zhang, F., Han, B., Shan, Q., Zeng, H., Adv. Mater. 30, 1805409 (2018).CrossRefGoogle Scholar
Shen, X., Zhang, Y., Kershaw, S.V., Li, T., Wang, C., Zhang, X., Wang, W., Li, D., Wang, Y., Lu, M., Nano Lett. 19, 1552 (2019).CrossRefGoogle Scholar
Lu, M., Zhang, X., Bai, X., Wu, H., Shen, X., Zhang, Y., Zhang, W., Zheng, W., Song, H., Yu, W.W., ACS Energy Lett. 3, 1571 (2018).CrossRefGoogle Scholar
Xiao, Z., Kerner, R.A., Tran, N., Zhao, L., Scholes, G.D., Rand, B.P., Adv. Funct. Mater. 29, 1807284 (2019).CrossRefGoogle Scholar
Chiba, T., Hayashi, Y., Ebe, H., Hoshi, K., Sato, J., Sato, S., Pu, Y.-J., Ohisa, S., Kido, J., Nat. Photonics 12, 681 (2018).CrossRefGoogle Scholar
Liu, Y., Cui, J., Du, K., Tian, H., He, Z., Zhou, Q., Yang, Z., Deng, Y., Chen, D., Zuo, X., Nat. Photonics, 13, 760 (2019).CrossRefGoogle Scholar
Wang, H., Zhang, X., Wu, Q., Cao, F., Yang, D., Shang, Y., Ning, Z., Zhang, W., Zheng, W., Yan, Y., Nat. Commun. 10, 665 (2019).CrossRefGoogle Scholar
Chen, Q., Wu, J., Ou, X., Huang, B., Almutlaq, J., Zhumekenov, A.A., Guan, X., Han, S., Liang, L., Yi, Z., Nature 561, 88 (2018).CrossRefGoogle Scholar
Heo, J.H., Shin, D.H., Park, J.K., Kim, D.H., Lee, S.J., Im, S.H., Adv. Mater. 30, 1801743 (2018).CrossRefGoogle Scholar
Zhang, Y., Sun, R., Ou, X., Fu, K., Chen, Q., Ding, Y., Xu, L.-J., Liu, L., Han, Y., Malko, A.V., ACS Nano 13, 2520 (2019).CrossRefGoogle Scholar
Cao, F., Yu, D., ma, W., Xu, X., Cai, B., Yang, Y., Liu, S., He, L., Ke, Y., Lan, S., Choy, K.-L., Zeng, H., ACS Nano (2019), doi:10.1021/acsnano.9b06114.□Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 73
Total number of PDF views: 223 *
View data table for this chart

* Views captured on Cambridge Core between 16th June 2020 - 6th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Advances in light-emitting metal-halide perovskite nanocrystals
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Advances in light-emitting metal-halide perovskite nanocrystals
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Advances in light-emitting metal-halide perovskite nanocrystals
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *