Skip to main content Accessibility help

X-Ray Dynamical Diffraction in Powder Samples with Time-Dependent Particle Size Distributions

  • Adriana Valério (a1), Sérgio L. Morelhão (a1), Alex J. Freitas Cabral (a2) (a3), Márcio M. Soares (a4) and Cláudio M. R. Remédios (a2)...


In situ X-ray diffraction is one of the most useful tools for studying a variety of processes, among which crystallization of nanoparticles where phase purity and size control are desired. Growth kinetics of a single phase can be completely resolved by proper analysis of the diffraction peaks as a function of time. The peak width provides a parameter for monitoring the time evolution of the particle size distribution (PSD), while the peak area (integrated intensity) is directly related to the whole diffracting volume of crystallized material in the sample. However, to precisely describe the growth kinetics in terms of nucleation and coarsening, the correlation between PSD parameters and diffraction peak widths has to be established in each particular study. Corrections in integrated intensity values for physical phenomena such as variation in atomic thermal vibrations and dynamical diffraction effects have also to be considered in certain cases. In this work, a general correlation between PSD median value and diffraction peak width is deduced, and a systematic procedure to resolve time-dependent lognormal PSDs from in situ XRD experiments is described in details. A procedure to correct the integrated intensities for dynamical diffraction effects is proposed. As a practical demonstration, this analytical procedure has been applied to the single-phase crystallization process of bismuth ferrite nanoparticles.


Corresponding author


Hide All
[1]Vamvakeros, A., Jacques, S. D. M., Di Michiel, M., et al. Nat Commun. 9, 4751 (2018).10.1038/s41467-018-07046-8
[2]Gu, Ying-Qiu, Fu, Xin-Pu, Du, Pei-Pei, et al. J. Phys. Chem. C 119, 17102-17110 (2015).
[3]Bak, S.-M., Shadike, Z., Lin, R., Yu, X., Yang, X.-Q.. NPG Asia Materials 10, 563580 (2018).
[4]Mi, J.-L., Jensen, T. N., Christensen, M., Tyrsted, C., Jørgensen, J. E., Iversen, B. B.. Chem. Mater. 23, 11581165 (2011).
[5]Clarke, G., Rogov, A., McCarthy, S. et al. Scientific Reports 8, 10473 (2018).
[6]Zhang, Z., Wang, Z., He, S., Wang, C., Jin, M., and Yin, Y., Chem. Sci. 6, 5197 (2015).
[7]Morelhão, S. L., Computer Simulation Tools for X-ray Analysis. (Graduate Texts in Physics Springer, Cham, 2016).
[8]Dina, G., Gonzalez, A. G., Morelhão, S. L., Kycia, S.. MRS Advances 3, 2347-2352 (2018).10.1557/adv.2018.511
[9]Freitas Cabral, A. J., Valerio, A., Morelhão, S. L., Soares, M. M., Remedios, C. M. R.. To appear in Cryst. Growth & Design (2019).
[10]Scherrer, P.. Nachr. Ges. Wiss. Göettingen, Math.-Phys. Kl, 98 (1918).
[11]Morelhão, S. L., Remédios, C. M. R., Freitas, R. O., dos Santos, A. O.. J. Appl. Cryst. 44, 93-101 (2011).10.1107/S0021889810042391
[12]Morelhão, S. L., Avanci, L. H.. Acta Cryst. A 57, 192-196 (2001).
[13]Avanci, L. H., Hayashi, M. A., Cardoso, L. P., Morelhão, S. L., Riesz, F., Rakennus, K., Hakkarainen, T.. J. Cryst. Growth 188, 220-224 (1998).
[14]Integrated reflectivities in semi-infinite crystals (infinite thickness) have maximum values smaller than the intrinsic width W of each Bragg reflection. It follows from the fact that reflectivity curves are always limited to values smaller than 1 hence their area A < 1 × W.
[15]$W = {\rm{r}}_{\rm{e}} {\rm{\lambda }}^2 \left| {{\rm{F}}_{{\rm{hkl}}} {\rm{F}}_{{\rm{\bar h\bar k\bar l}}} } \right|^{1/2} /{\rm{V}}_{{\rm{cell}}} \sin 2{\rm{\theta }}_{\rm{B}} $ for σ-polarized x-rays where re = 2.818 × 10−5Å is theclassic electron radius, Fhkl is the structure factor of the hkl reflection with Bragg angle θB for the wavelength λ, and Vcell is the unit cell volume [7].
[16]Kiss, L. B., Söderlund, J., Niklasson, G. A., Granqvist, C. G.. Nanotechnology 10, 25-28 (1999)
[17]Cervellino, A., Giannini, C., Guagliardi, A., Ladisa, M.. Phys. Rev. B 72, 035412 (2005).10.1103/PhysRevB.72.035412
[18]Bruno, M.. CrystEngComm 21, 4918-4924 (2019).
[19]Palewicz, A., Przeniosło, R., Sosnowska, I., Hewat, A. W.. Acta Cryst. B 63, 537-544 (2007).


X-Ray Dynamical Diffraction in Powder Samples with Time-Dependent Particle Size Distributions

  • Adriana Valério (a1), Sérgio L. Morelhão (a1), Alex J. Freitas Cabral (a2) (a3), Márcio M. Soares (a4) and Cláudio M. R. Remédios (a2)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.

This addendum applies to the following article(s):