Skip to main content Accessibility help

X-Ray Diffraction and Electron Microscopy Studies of the Size Effects on Pressure-Induced Phase Transitions in CdS Nanocrystals

  • Lingyao Meng (a1), Hongyou Fan (a2) (a3) (a4), J. Matthew Lane (a2), Luke Baca (a1), Jackie Tafoya (a1), Tommy Ao (a2), Brian Stoltzfus (a2), Marcus Knudson (a2), Dane Morgan (a5), Kevin Austin (a2), Changyong Park (a6) and Yang Qin (a1)...


In recent years, investigations of the phase transition behavior of semiconducting nanoparticles under high pressure has attracted increasing attention due to their potential applications in sensors, electronics, and optics. However, current understanding of how the size of nanoparticles influences this pressure-dependent property is somewhat lacking. In particular, phase behaviors of semiconducting CdS nanoparticles under high pressure have not been extensively reported. Therefore, in this work, CdS nanoparticles of different sizes are used as a model system to investigate particle size effects on high-pressure-induced phase transition behaviors. In particular, 7.5, 10.6, and 39.7 nm spherical CdS nanoparticles are synthesized and subjected to controlled high pressures up to 15 GPa in a diamond anvil cell. Analysis of all three nanoparticles using in-situ synchrotron wide-angle X-ray scattering (WAXS) data shows that phase transitions from wurtzite to rocksalt occur at higher pressures than for bulk material. Bulk modulus calculations not only show that the wurtzite CdS nanomaterial is more compressible than rocksalt, but also that the compressibility of CdS nanoparticles depends on their particle size. Furthermore, sintering of spherical nanoparticles into nanorods was observed for the 7.5 nm CdS nanoparticles. Our results provide new insights into the fundamental properties of nanoparticles under high pressure that will inform designs of new nanomaterial structures for emerging applications.


Corresponding author



Hide All
1.Afzaal, M. and O’Brien, P., J. Mater. Chem 16, 1597 (2006).
2.Wang, J., Zhong, Y., Wang, X., Yang, W., Bai, F., Zhang, B., Alarid, L., Bian, K., Fan, H., Nano Lett. 17, 6916 (2018).
3.Zhang, Q., Guo, X., Huang, X., Huang, S., Li, D., Luo, Y., Shen, Q., Toyoda, T. and Meng, Q., Phys. Chem. Chem. Phys. 13, 4659 (2011).
4.Cheng, L., Xiang, Q., Liao, Y. and Zhang, H., Energy Environ. Sci. 11, 1362 (2018).
5.Liu, J., Liang, Y., Wang, L., Wang, B., Zhang, T. and Yi, F., Mat. Sci. Semicon. Proc. 56, 217 (2016).
6.Zhang, N., Wang, L., Wang, H., Cao, R., Wang, J., Bai, F., Fan, H., Nano Lett. 18, 560 (2018).
7.Owen, N., Smith, P., Martin, J. and Wright, A., J. Phys. Chem. Solids 24, 1519 (1963).
8.Mitra, R. N., Doshi, M., Zhang, X., Tyus, J. C., Bengtsson, N., Fletcher, S., Page, B. D., Turkson, J., Gesquiere, A. J. and Gunning, P. T., Biomaterials 33, 1500 (2012).
9.Zhang, J., Li, D., Chen, R. and Xiong, Q., Nature 493, 504 (2013).
10.Wang, Y., Fu, H., Wang, Y., Tan, L., Chen, L. and Chen, Y., Phys. Chem. Chem. Phys. 18, 12175 (2016).
11.Yong, K.-T., Sahoo, Y., Swihart, M. T. and Prasad, P. N., J. Phys. Chem. C 111, 2447 (2007).
12.Zhang, P. and Gao, L., Langmuir 19, 208 (2003).
13.Chae, W.-S., Shin, H.-W., Lee, E.-S., Shin, E.-J., Jung, J.-S. and Kim, Y.-R., J. Phys. Chem. B 109, 6204 (2005).
14.Chu, H., Li, X., Chen, G., Zhou, W., Zhang, Y., Jin, Z., Xu, J. and Li, Y., Cryst. Growth Des. 5, 1801 (2005).
15.Li, B., Wen, X., Li, R., Wang, Z., Clem, P. G. and Fan, H., Nat. Commun. 5, 4179 (2014).
16.Wu, H., Bai, F., Sun, Z., Haddad, R. E., Boye, D. M., Wang, Z. and Fan, H., Angew. Chem. Int. Ed. 49, 8431 (2010).
17.Li, B., Bian, K., Zhou, X., Lu, P., Liu, S., Brener, I., Sinclair, M., Luk, T., Schunk, H., Alarid, L. and Fan, H., Sci. Adv. 3, e1602916 (2017).
18.Bai, F., Bian, K., Huang, X., Wang, Z. and Fan, H., Chem. Rev. (2019).
19.Wu, H., Bai, F., Sun, Z., Haddad, R. E., Boye, D. M., Wang, Z., Huang, J. Y. and Fan, H., J. Am. Chem. Soc. 132, 12826 (2010).
20.Wang, Z., Schliehe, C., Wang, T., Nagaoka, Y., Cao, Y. C., Bassett, W. A., Wu, H., Fan, H. and Weller, H., J. Am. Chem. Soc. 133, 14484 (2011).
21.Li, W., Fan, H. and Li, J., Nano Lett. 14, 4951 (2014).
22.Wu, H., Wang, Z. and Fan, H., J. Am. Chem. Soc. 136, 7634 (2014).
23.Wang, Z., Wen, X.-D., Hoffmann, R., Son, J. S., Li, R., Fang, C.-C., Smilgies, D.-M. and Hyeon, T., Proc. Natl. Acad. Sci. U.S.A. 107, 17119 (2010).
24.Wang, Z., Chen, O., Cao, C. Y., Finkelstein, K., Smilgies, D.-M., Lu, X. and Bassett, W. A., Rev. Sci. Instrum. 81, 093902 (2010).
25.Zhu, H., Nagaoka, Y., Hills-Kimball, K., Tan, R., Yu, L., Fang, Y., Wang, K., Li, R., Wang, Z. and Chen, O., J. Am. Chem. Soc. 139, 8408 (2017).
26.Nagaoka, Y., Hills‐Kimball, K., Tan, R., Li, R., Wang, Z. and Chen, O., Adv. Mater. 29, 1606666 (2017).
27.Mishra, A., Garg, N., Pandey, K. and Singh, V., J. Phys.: Conf. Ser. 377, 12012 (2012).
28.Martín-Rodríguez, R., González, J., Valiente, R., Aguado, F., Santamaría-Pérez, D. and Rodríguez, F., J. Appl. Phys. 111, 063516 (2012).
29.Nanba, T., Muneyasu, M., Hiraoka, N., Kaga, S., Williams, G., Shimomura, O. and Adachi, T., J. Synchrotron Radiat. 5, 1016 (1998).
30.Tolbert, S. H. and Alivisatos, A., Annu. Rev. Phys. 46, 595 (1995).
31.Zhao, R., Yang, T., Luo, Y., Chuai, M., Wu, X., Zhang, Y., Ma, Y. and Zhang, M., RSC Adv. 7, 31433 (2017).
32.Zhao, R., Wang, P., Yao, B., Hu, T., Yang, T., Xiao, B., Wang, S., Xiao, C. and Zhang, M., RSC Adv. 5, 17582 (2015).
33.Arora, V., Soni, U., Mittal, M., Yadav, S. and Sapra, S., Journal of colloid and interface science 491, 329 (2017).
34.Fang, Y., Li, Z., Jiang, Y., Wang, X., Chen, H.-Y., Tao, N. and Wang, W., Proc. Natl. Acad. Sci. U.S.A. 114, 10566 (2017).
35.Park, C., Popov, D., Ikuta, D., Lin, C., Kenney-Benson, C., Rod, E., Bommannavar, A. and Shen, G., Rev. Sci. Instrum. 86, 072205 (2015).
36.Prescher, C. and Prakapenka, V. B., High Pressure Research 35, 223 (2015).
37.Li, Q.-J. and Liu, B.-B., Chin. Phys. B 25, 076107 (2016).
38.Fei, L., Xu, Y., Wu, X., Chen, G., Li, Y., Li, B., Deng, S., Smirnov, S., Fan, H., Luo, H., Nanoscale, 6, 3664 (2014).
39.Kennedy, J. and Benedick, W., J. Phys. Chem. Solids 27, 125 (1966).
40.Murnaghan, F. D., Amer. J. Math. 59, 235 (1937).
41.Birch, F., Phys. Rev. 71, 809 (1947).
42.Murnaghan, F., Proc. Natl. Acad. Sci. U.S.A. 30, 244 (1944).
43.Grünwald, M., Zayak, A., Neaton, J. B., Geissler, P. L. and Rabani, E., J. Chem. Phys. 136, 234111 (2012).
44.Jiang, J., Olsen, J. S., Gerward, L. and Mørup, S., EPL 44, 620 (1998).
45.Gu, Q., Krauss, G., Steurer, W., Gramm, F. and Cervellino, A., Phys. Rev. Lett. 100, 045502 (2008).
46.Clark, S., Prilliman, S., Erdonmez, C. and Alivisatos, A., Nanotechnology 16, 2813 (2005).
47.Bian, K., Bassett, W., Wang, Z. and Hanrath, T., J. Phys. Chem. Lett 5, 3688 (2014).
48.Gilbert, B., Zhang, H., Chen, B., Kunz, M., Huang, F. and Banfield, J., Phys. Rev. 74, 115405 (2006).


X-Ray Diffraction and Electron Microscopy Studies of the Size Effects on Pressure-Induced Phase Transitions in CdS Nanocrystals

  • Lingyao Meng (a1), Hongyou Fan (a2) (a3) (a4), J. Matthew Lane (a2), Luke Baca (a1), Jackie Tafoya (a1), Tommy Ao (a2), Brian Stoltzfus (a2), Marcus Knudson (a2), Dane Morgan (a5), Kevin Austin (a2), Changyong Park (a6) and Yang Qin (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.