Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T14:27:37.742Z Has data issue: false hasContentIssue false

Widely Tunable Localized Surface Plasmon Scattering in Mesoporous ITO Electrodes

Published online by Cambridge University Press:  06 January 2016

Praveen Pattathil
Affiliation:
Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, via Barsanti, 73010, Arnesano (Lecce), Italy
Roberto Giannuzzi
Affiliation:
Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, via Barsanti, 73010, Arnesano (Lecce), Italy
Antonio Qualtieri
Affiliation:
Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, via Barsanti, 73010, Arnesano (Lecce), Italy
Mariam Barawi
Affiliation:
Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, via Barsanti, 73010, Arnesano (Lecce), Italy
Michele Manca*
Affiliation:
Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, via Barsanti, 73010, Arnesano (Lecce), Italy
*
*corresponding author e-mail: michele.manca@iit.it
Get access

Abstract

We here report the fabrication of high-quality nanostructured electrodes based on surfactant-capped ITO colloidal nanocrystals and their implementation in self-powered bi-functional smart devices which are simultaneously capable of generating electric energy as a photovoltaic system as well as of controlling the intensity of incoming thermal radiation by means of a smart variation of their optical transmittance. A reversible modulation of the solar transmittance in the NIR range higher than 60% has been experimentally demonstrated.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Granqvist, C. G., Handbook of Inorganic Electrochromic Oxides, 1st ed. ( Elsevier Publishers, Amsterdam, 1995) pp. 1317.Google Scholar
Deb, S. K., Sol. Energy Mater. Sol. Cells, 39, 191201(1995).CrossRefGoogle Scholar
Svensson, J. S. E. M., and Granqvist, C. G., Sol. Energy Mater. 12, 391402 (1985).Google Scholar
Niklasson, G. A., and Granqvist, C. G., J. Mater. Chem. 17, 127156 (2007).Google Scholar
Berggren, L., and Niklasson, G. A., Appl. Phys. Lett. 88, 13 (2006).Google Scholar
Berggren, L., Azens, A., and Niklasson, G. A., J. Appl. Phys. 90, 18601863 (2001).CrossRefGoogle Scholar
Matsui, J., Kikuchi, R., and Miyashita, T., J. Am. Chem. Soc. 136, 842845 (2014).CrossRefGoogle Scholar
Sharmoukh, W., Ko, K. C., Noh, C., Lee, J. Y., and Son, S. U., J. Org. Chem. 75, 67086711 (2010).CrossRefGoogle Scholar
Mulvaney, P., Langmuir. 12 (3), 788800 (1996).CrossRefGoogle Scholar
Mulvaney, P., Giersig, M., and Henglein, A., J. Phys. Chem, 97, 70617064 (1993).CrossRefGoogle Scholar
Comin, A., and Manna, L., Chem. Soc. Rev. 43, 39573975 (2014).Google Scholar
Erwin, S. C., Zu, L. J., Haftel, M. I., Efros, A. L., Kennedy, T. A., and Norris, D. J., Nature. 436, 9194 (2005).Google Scholar
Runnerstrom, E. L., Llordes, A., Lounis, S. D., and Milliron, D. J., Chem. Comm. 50, 1055510572 (2014).Google Scholar
Garcia, G., Raffaella, B., Anna, L., Evan, L. R., Amy, B., and Milliron, D.J., J. Adv. Optical Mater, 1, 215220 (2013).Google Scholar
Buonsanti, R., Llordes, A., Aloni, S., Helms, B. A., and Milliron, D. J., Nano Lett., 11, 47064710 (2011).Google Scholar
Lee, S. H., Tracy, C. E., Yan, Y., Pitts, J. R., and Deb, S. K., Electrochem. Solid-State Lett. 8, A188A190 (2005).Google Scholar
Kamat, P. V., Dimitrijevic, N.M. and Nozik, A.J., J. Phys. Chem., 1989, 93 (8), 28732875 Google Scholar
Li, S.Y., Niklasson, G. A., Granqvist, C.G., Appl. Phys. Lett, 101, 071903 (2012).Google Scholar