Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-14T20:53:08.424Z Has data issue: false hasContentIssue false

Tunable Photoluminescence of Atomically Thin MoS2 via Nb Doping

Published online by Cambridge University Press:  16 January 2019

Gourav Bhowmik*
Affiliation:
Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY12203, U.S.A. Ion Beam Laboratory, University at Albany, SUNY, 1400 Washington Ave, Albany, NY12222, U.S.A.
Katherine Gruenewald
Affiliation:
Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY12203, U.S.A.
Girish Malladi
Affiliation:
Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY12203, U.S.A.
Tyler Mowll
Affiliation:
Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY12203, U.S.A.
Carl Ventrice Jr.
Affiliation:
Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY12203, U.S.A.
Mengbing Huang
Affiliation:
Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY12203, U.S.A.
Get access

Abstract

The emergence of 2D materials has led to increased attention on correlating the structural, optical, and optoelectronic properties of atomically thin transition metal chalcogenides like MoS2. We demonstrate the tunability of the photoluminescence (PL) properties of bulk MoS2 via implantation of Nb ions. Raman spectroscopy is used to confirm the p-type doping. The PL intensity of MoS2 is drastically enhanced by the adsorption of p-type dopants. X-ray photoelectron spectroscopy (XPS) is used to study the change of MoS2 structure post-implantation. Our results provide a new route for modulating the optical properties of two-dimensional semiconductors. The strong and stable PL from defect sites of MoS2 created by Nb ion implantation may have promising applications in optoelectronic devices.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., and Kis, A., Nat. Nanotechnol. 6, 147 (2011).CrossRefGoogle Scholar
Radisavljevic, B., Whitwick, M. B., and Kis, A., ACS Nano 5, 9934 (2011).CrossRefGoogle Scholar
Wang, H., Yu, L., Lee, Y.-H., Shi, Y., Hsu, A., Chin, M. L., Li, L.-J., Dubey, M., Kong, J., and Palacios, T., Nano Lett. 12(9), 46744680 (2012).CrossRefGoogle Scholar
Roxlo, C. B.; Chianelli, R. R.; Deckman, H. W.; Ruppert, A. F.; Wong, P. P. J. Vac. Sci. Technol., A 5, 555 (1987).CrossRefGoogle Scholar
Li, T. S.; Galli, G. L. J. Phys. Chem. C, 111, 16192 (2007).CrossRefGoogle Scholar
Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Nano Lett ., 10, 1271 (2010).10.1021/nl903868wCrossRefGoogle Scholar
Dolui, K.; Rungger, I.; Pemmaraju, C. D.; Sanvito, S. Phys. Rev. B, 88, 075420 (2013).CrossRefGoogle Scholar
Wilson, J. A.; Yoffe, A. D. Adv. Phys., 18, 193335 (1969).10.1080/00018736900101307CrossRefGoogle Scholar
Ivanovskaya, V. V.; Zobelli, A.; Gloter, A.; Brun, N.; Serin, V.; Colliex, C. Phys. Rev. B, 78, 134104 (2008).CrossRefGoogle Scholar
Deepak, F. L.; Cohen, H.; Cohen, S.; Feldman, Y.; Popovitz-Biro, R.; Azulay, D.; Millo, O.; Tenne, R. J. Am. Chem. Soc., 129, 1254912562 (2007).CrossRefGoogle Scholar
Laskar, M. R.; Nath, D. N.; Ma, L.; Lee, E. W. II; Lee, C. H.; Kent, T.; Yang, Z.; Mishra, R.; Roldan, M. A.; Idrobo, J.-C.; Pantelides, S. T.; Pennycook, S. J.; Myers, R. C.; Wu, Y.; Rajan, S. Appl. Phys. Lett., 104, 092104 (2014).CrossRefGoogle Scholar
Bhowmik, G.; An, Y. Q.; Diebold, A. C.; Huang, M., Proceedings of SPIE Vol. 10720, 107200J (2018).Google Scholar
Chakraborty, B.; Bera, A.; Muthu, D. V. S.; Bhowmick, S.; Waghmare, U. V.; Sood, A. K. Phys. Rev. B, 85, 161403 (2012).CrossRefGoogle Scholar
Mao, N. N.; Chen, Y. F.; Liu, D. M.; Zhang, J.; Xie, L. M. Small, 8, 13121315 (2013).10.1002/smll.201202982CrossRefGoogle Scholar
Sekine, T.; Uchinokura, K. et al. , J. Phys. Soc. Japan, 53, 811-818 (1984).10.1143/JPSJ.53.811CrossRefGoogle Scholar
Wakabayashi, N.; Smith, H.G.; Nicklow, R.M. Phys. Rev. B, 81, 195209 (2010).Google Scholar
Wilson, J. A.; Yoffe, A. D. Adv. Phys., 18, 193 (1969).CrossRefGoogle Scholar
Heising, J.; Kanatzidis, M. G. J. Am. Chem. Soc., 121, 638 (1999).10.1021/ja983043cCrossRefGoogle Scholar
Kam, K. K.; Parkinson, B. A. J. Phys. Chem., 86, 463467 (1982).CrossRefGoogle Scholar
Nirmal, M.; Brus, L. Acc. Chem. Res., 32, 407 (1999).10.1021/ar9700320CrossRefGoogle Scholar
Qiu, H.; Xu, T.; Wang, Z. L; Ren, W.; Nan, H. Y.; Ni, Z. H.; Chen, Q.; Yuan, S. J.; Miao, F.; Song, F. Q.; et al. Nat. Commun., 4, 2642 (2013).CrossRefGoogle Scholar
Zhang, Y.J.; Ye, J.T.; Yomogida, Y.; Takenobu, T.; Iwasa, Y., Nano Lett., 13, 30233028 (2013).CrossRefGoogle Scholar