Skip to main content Accessibility help
×
Home

Three-Dimensional Graphene-Based Composite for Elastic Strain Sensor Applications

  • Jinhui Li (a1), Guoping Zhang (a1), Rong Sun (a1) and C. P. Wong (a2) (a3)

Abstract

Flexible electronics has emerged as a very promising field, in particular,wearable, bendable, and stretchable strain sensors with high sensitivity which could be used for human motion detection, sports performance monitoring, etc. In this paper, a highly stretchable and sensitive strain sensor composed of reduced graphene oxide foam and elastomer composite is fabricated by assembly and followed by a polymer immersing process. The strain sensor has demonstrated high stretchability and sensitivity. Furthermore, the device was employed for gauging muscle-induced strain which results in high sensitivity and reproducibility. The developed strain sensors showed great application potential in fields of biomechanical systems.

Copyright

Corresponding author

* gp.zhang@siat.ac.cn, +86755-86392104

References

Hide All
1. Amjadi, M., Kyung, K.U., Park, I. and Sitti, M.: Stretchable, Skin - Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review. Adv. Funct. Mater., DOI: 10.1002/adfm.201504755 (2016).
2. Park, J., You, I., Shin, S. and Jeong, U.: Material Approaches to Stretchable Strain Sensors. ChemPhysChem. 16, 1155 (2015).
3. Amjadi, M., Pichitpajongkit, A., Lee, S., Ryu, S. and Park, I.: Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite. ACS nano. 8, 5154 (2014).
4. Cochrane, C., Koncar, V., Lewandowski, M. and Dufour, C.: Design and development of a flexible strain sensor for textile structures based on a conductive polymer composite. Sensors. 7, 473 (2007).
5. Kong, J.-H., Jang, N.-S., Kim, S.-H. and Kim, J.-M.: Simple and rapid micropatterning of conductive carbon composites and its application to elastic strain sensors. Carbon. 77, 199 (2014).
6. Hu, N., Karube, Y., Arai, M., Watanabe, T., Yan, C., Li, Y., Liu, Y. and Fukunaga, H.: Investigation on sensitivity of a polymer/carbon nanotube composite strain sensor. Carbon. 48, 680 (2010).
7. Roh, E., Hwang, B.-U., Kim, D., Kim, B.-Y. and Lee, N.-E.: Stretchable, Transparent, Ultrasensitive, and Patchable Strain Sensor for Human–Machine Interfaces Comprising a Nanohybrid of Carbon Nanotubes and Conductive Elastomers. ACS nano. 9, 6252 (2015).
8. Wang, Y., Wang, L., Yang, T., Li, X., Zang, X., Zhu, M., Wang, K., Wu, D. and Zhu, H.: Wearable and highly sensitive graphene strain sensors for human motion monitoring. Adv. Funct. Mater. 24, 4666 (2014).
9. Wang, Y., Yang, T., Lao, J., Zhang, R., Zhang, Y., Zhu, M., Li, X., Zang, X., Wang, K. and Yu, W.: Ultra-sensitive graphene strain sensor for sound signal acquisition and recognition. Nano Research. 8, 1627 (2015).
10. Yan, C., Wang, J., Kang, W., Cui, M., Wang, X., Foo, C.Y., Chee, K.J. and Lee, P.S.: Highly stretchable piezoresistive graphene–nanocellulose nanopaper for strain sensors. Adv. Mater. 26, 2022 (2014).
11. Chen, Z., Ren, W., Gao, L., Liu, B., Pei, S. and Cheng, H.-M.: Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nature materials. 10, 424 (2011).
12. Samad, Y.A., Li, Y., Alhassan, S.M. and Liao, K.: Novel graphene foam composite with adjustable sensitivity for sensor applications. Acs Appl. Mater. Interfaces. 7, 9195 (2015).
13. Xu, R., Lu, Y., Jiang, C., Chen, J., Mao, P., Gao, G., Zhang, L. and Wu, S.: Facile fabrication of three-dimensional graphene foam/poly (dimethylsiloxane) composites and their potential application as strain sensor.Acs Appl. Mater. Interfaces. 6, 13455 (2014).
14. Li, J., Zhao, S., Zhang, G., Gao, Y., Deng, L., Sun, R. and Wong, C.-P.: A facile method to prepare highly compressible three-dimensional graphene-only sponge. J. Mater. Chem. A. 3, 15482 (2015).
15. Zhao, S., Gao, Y., Zhang, G., Deng, L., Li, J., Sun, R. and Wong, C.-P.: Covalently bonded nitrogen-doped carbon-nanotube-supported Ag hybrid sponges: Synthesis, structure manipulation, and its application for flexible conductors and strain-gauge sensors. Carbon. 86, 225 (2015).

Keywords

Three-Dimensional Graphene-Based Composite for Elastic Strain Sensor Applications

  • Jinhui Li (a1), Guoping Zhang (a1), Rong Sun (a1) and C. P. Wong (a2) (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed