Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T02:31:11.481Z Has data issue: false hasContentIssue false

Theoretical prediction of piezoelectric property of new LiNbO3-type compound AlTlO3

Published online by Cambridge University Press:  04 February 2019

Kaoru Nakamura*
Affiliation:
Central Research Institute of Electric Power Industry, 2-6-1, Nagasaka, Yokosuka, Kanagawa, Japan
Toshiharu Ohnuma
Affiliation:
Central Research Institute of Electric Power Industry, 2-6-1, Nagasaka, Yokosuka, Kanagawa, Japan
Get access

Abstract

By using systematic first-principles calculation, we found that AlTlO3 compound of LiNbO3 structure shows large piezoelectric constants e33 of 10.7 C/m2 and d33 of 56.7 pC/N. These piezoelectric constants are approximately six times larger than those of LiNbO3. AlTlO3 is predicted to be stabilized above 7 GPa. On the other hand, the calculated dielectric constant ε33 shows diverged behavior around 2 GPa. This result indicates that AlTlO3 can be quenchable. Decomposition of the predicted piezoelectric constant revealed that the large piezoelectricity of AlTlO3 originates from the Tl displacement in accordance with external perturbation, which drives the ferroelectric soft mode of the corresponding paraelectric phase. However, the energy difference between the ferroelectric and paraelectric phases was small, approximately 1 meV/f.u. These insights suggest that fluctuation between ferroelectric and paraelectric phases causes large piezoelectricity in AlTlO3.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

Megaw, H. D., Acta Crystallogr., A24, 583 (1968).CrossRefGoogle Scholar
Lebedev, A. I., Phys. Sol. State, 51, 362 (2009).CrossRefGoogle Scholar
Parlinski, K., Li, Z. Q. and Kawazoe, Y., Phys. Rev. B, 61, 272 (2000).CrossRefGoogle Scholar
Smolenskii, G. A., Krainik, N. N., Khuchua, N. P., Zhdanova, V. V. and Mylnikova, I. E., Basic Sol. State Phys., 13, 309 (1966).CrossRefGoogle Scholar
Ahart, M., Somayazulu, M., Cohen, R. E., Ganesh, P., Dera, P., Mao, H., Hemley, R. J., Liermann, P. and Wu, Z., Nature 451, 545 (2008).CrossRefGoogle Scholar
Inaguma, Y., Yoshida, M. and Katsumata, T., J. Am. Chem. Soc., 130, 6704 (2008).CrossRefGoogle Scholar
Nakayama, M., Nogami, M., Yoshida, M., Katsumata, T. and Inaguma, Y., Adv. Mater., 22, 2579 (2010).CrossRefGoogle Scholar
Nakamura, K., Higuchi, S. and Ohnuma, T., J. Appl. Phys., 111, 033522 (2012).CrossRefGoogle Scholar
de Jong, M., Chen, W., Geerlings, H., Asta, M. and Persson, K. A., Scientific Data 2, 150053 (2015).CrossRefGoogle Scholar
Kresse, G. and Furthmüller, J., Phys. Rev. B 54, 11169 (1996).CrossRefGoogle Scholar
Blöchl, P. E., Phys. Rev. B 50, 17953 (1994).CrossRefGoogle Scholar
Perdew, J. P., Burke, K. and Ernzerhof, M., Phys. Rev. Lett., 78, 1396 (1997).CrossRefGoogle Scholar
Wu, X., Vanderbilt, D. and Hamann, D. R., Phys. Rev. B, 72, 035105 (2005).CrossRefGoogle Scholar
Momma, K. and Izumi, F. J. Appl. Crystallogr., 41, 653 (2008).CrossRefGoogle Scholar
Togo, A., Oba, F. and Tanaka, I., Phys. Rev. B, 78, 134106 (2008).CrossRefGoogle Scholar
Oganov, A. R. and Glass, C. W., J. Chem. Phys., 124, 244704 (2006).CrossRefGoogle Scholar
Yamanaka, T., Komatsu, Y., Sugahara, M. and Nagai, T., Am. Min., 90, 1301 (2005)CrossRefGoogle Scholar
Inaguma, Y., Aimi, A., Shirako, Y., Sakurai, D., Mori, D., Kohitani, H., Akaogi, M. and Nakayama, M., J. Am. Chem. Soc., 136, 2748 (2014).CrossRefGoogle Scholar
Ko, J. and Prewitt, C. T., Phys. Chem. Min., 15, 355 (1988).CrossRefGoogle Scholar
Kushibiki, J., Takanaga, I., Arakawa, M. and Sannomiya, T., IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 46, 1315 (1999).CrossRefGoogle Scholar
Viskov, A. S., Zubova, E. V., Burdina, K. P. and Venevtsev, Y. N., Sov. Phys. Crystallogr., 15, 932 (1971).Google Scholar
Friedrich, M., Riefer, A., Sanna, S., Schmidt, W. G. and Schindlmayr, A., J. Phy.: Cond. Matter, 27, 385402 (2015)Google Scholar
Wu, Z. and Cohen, R. E., Phys. Rev. Lett., 95, 037601 (2005).CrossRefGoogle Scholar
Nakamura, K., Higuchi, S. and Ohnuma, T., J. Appl. Phys., 119, 114102 (2016).CrossRefGoogle Scholar
Ghosez, P., Michenaud, J.-P. and Gonze, X., Phys. Rev. B, 58, 6224 (1998).CrossRefGoogle Scholar
Sághi-Szabó, G. and Cohen, R. E., Phys. Rev. Lett., 80, 4321 (1998).CrossRefGoogle Scholar