Skip to main content Accessibility help
×
Home

Temperature induced spin crossover behaviour in mononuclear cobalt(II) bis terpyridine complexes

  • Venkata Nikhil Raj M. (a1), Kishalay Bhar (a1), Tanveer A. Khan (a1), Surbhi Jain (a1), Franc Perdih (a2), Partha Mitra (a3) and Anuj K. Sharma (a1)...

Abstract

Dicationic cobalt(II) complexes of the type [Co(fterpy)2]c(X)2·nH2O·mCH3OH (fterpy = 4′-(2-furyl)-2,2′:6′,2″-terpyridine; 1: X = PF6-, n = 1.5, m = 0; 2: X = ClO4-, n = 1, m = 1) have been isolated using self-assembly method and characterized by various spectroscopic techniques. In crystalline states both compounds exhibit gradual and incomplete spin crossover (SCO) behaviour in the temperature range 2-320 K. Various spin states of cobalt(II) in 1 have been confirmed by crystallographic evidences at 150 K and 293 K. A variation in counter anions and solvent molecules from 1 to 2 substantially improves the cooperativity among the spin active metal centres and thereby changing the nature of SCO behaviour.

Copyright

Corresponding author

*Corresponding author: Dr. Anuj K. Sharma (Email: anuj.sharma@curaj.ac.in)

Footnotes

Hide All

In Memory of Dr. Sunil G. Naik

Footnotes

References

Hide All
1.Halcrow, M.A.: Spin-crossover materials: properties and applications, (John Wiley & Sons 2013).
2.Brooker, S.: Spin crossover with thermal hysteresis: Practicalities and lessons learnt. Chem. Soc. Rev. 44, 2880 (2015).
3.Garcia, Y., van Koningsbruggen, P.J., Codjovi, E., Lapouyade, R., Kahn, O. and Rabardel, L.: Non-classical Fe II spin-crossover behaviour leading to an unprecedented extremely large apparent thermal hysteresis of 270 K: application for displays. J. Mater. Chem. 7, 857 (1997).
4.Kahn, O. and Martinez, C.J.: Spin-transition polymers: from molecular materials toward memory devices. Science 279, 44 (1998).
5.Lefter, C., Davesne, V., Salmon, L., Molnar, G., Demont, P., Rotaru, A. and Bousseksou, A.: Charge transport and electrical properties of spin crossover materials: towards nanoelectronic and spintronic devices. Magnetochemistry 2, 18 (2016).
6.Jureschi, C.-M., Linares, J., Boulmaali, A., Dahoo, P.R., Rotaru, A. and Garcia, Y.: Pressure and temperature sensors using two spin crossover materials. Sensors 16, 187 (2016).
7.Galyametdinov, Y., Ksenofontov, V., Prosvirin, A., Ovchinnikov, I., Ivanova, G., Gütlich, P. and Haase, W.: First example of coexistence of thermal spin transition and liquid‐crystal properties. Angew. Chem. Int. Ed. 40, 4269 (2001).
8.Bousseksou, A., Molnár, G., Salmon, L. and Nicolazzi, W.: Molecular spin crossover phenomenon: recent achievements and prospects. Chem. Soc. Rev. 40, 3313 (2011).
9.Matsuda, M. and Tajima, H.: Thin film of a spin crossover complex [Fe(dpp)2](BF4)2. Chem. Lett. 36, 700 (2007).
10.Real, J.A., Gaspar, A.B. and Munoz, M.C.: Thermal, pressure and light switchable spin-crossover materials. Dalton Trans ., 2062 (2005).
11.Gütlich, P., Ksenofontov, V. and Gaspar, A.B.: Pressure effect studies on spin crossover systems. Coord. Chem. Rev. 249, 1811 (2005).
12.Hauser, A.: Light-induced spin crossover and the high-spin→ low-spin relaxation, in Spin Crossover in Transition Metal Compounds II (Springer2004), pp. 155.
13.Tailleur, E., Marchivie, M., Daro, N., Chastanet, G. and Guionneau, P.: Thermal spin-crossover with a large hysteresis spanning room temperature in a mononuclear complex. Chem. Commun. 53, 4763 (2017).
14.Djemel, A., Stefanczyk, O., Marchivie, M., Trzop, E., Collet, E., Desplanches, C., Delimi, R. and Chastanet, G.: Solvatomorphism‐induced 45 K hysteresis width in a spin‐crossover mononuclear compound. Chem. Eur. J. 24, 14760 (2018).
15.Murray, K.S.: Advances in polynuclear iron(II), iron(III) and cobalt(II) spin‐crossover compounds. Eur. J. Inorg. Chem. 2008, 3101 (2008).
16.Jornet‐Mollá, V., Duan, Y., Giménez‐Saiz, C., Tang, Y.Y., Li, P.F., Romero, F.M. and Xiong, R.G.: A Ferroelectric Iron (II) Spin Crossover Material. Angew. Chem. 129, 14240 (2017).
17.Hogue, R.W., Singh, S. and Brooker, S.: Spin crossover in discrete polynuclear iron(II) complexes. Chem. Soc. Rev. 47, 7303 (2018).
18.Lochenie, C., Schötz, K., Panzer, F., Kurz, H., Maier, B., Puchtler, F., Agarwal, S., Köhler, A. and Weber, B.: Spin-crossover iron (II) coordination polymer with fluorescent properties: Correlation between emission properties and spin state. J. Am. Chem. Soc. 140, 700 (2018).
19.Ortega-Villar, N., Muñoz, M.C. and Real, J.A.: Symmetry breaking in iron(II) spin-crossover molecular crystals. Magnetochemistry 2, 16 (2016).
20.Sharma, A.K., De, A. and Mukherjee, R.: Design, structure, and properties of functional metal–ligand inorganic modules. Curr. Opin. Solid State Mater. Sci. 13, 54 (2009).
21.Harding, D.J., Harding, P. and Phonsri, W.: Spin crossover in iron(III) complexes. Coord. Chem. Rev. 313, 38 (2016).
22.Li, Z.Y., Ohtsu, H., Kojima, T., Dai, J.W., Yoshida, T., Breedlove, B.K., Zhang, W.X., Iguchi, H., Sato, O. and Kawano, M.: Direct Observation of Ordered High‐Spin–Low‐Spin Intermediate States of an Iron(III) Three‐Step Spin‐Crossover Complex. Angew. Chem. Int. Ed. 55, 5184 (2016).
23.Phonsri, W., Harding, P., Liu, L., Telfer, S.G., Murray, K.S., Moubaraki, B., Ross, T.M., Jameson, G.N. and Harding, D.J.: Solvent modified spin crossover in an iron(III) complex: phase changes and an exceptionally wide hysteresis. Chem. Sci. 8, 3949 (2017).
24.Gaspar, A.B. and Weber, B.: Spin crossover phenomenon in coordination compounds. Molecular Magnetic Materials: Concepts and Applications, 231 (2017).
25.Goodwin, H.A.: Spin crossover in cobalt (II) systems, in Spin Crossover in Transition Metal Compounds II (Springer 2004), pp. 23.
26.Krivokapic, I., Zerara, M., Daku, M.L., Vargas, A., Enachescu, C., Ambrus, C., Tregenna-Piggott, P., Amstutz, N., Krausz, E. and Hauser, A.: Spin-crossover in cobalt(II) imine complexes. Coord. Chem. Rev. 251, 364 (2007).
27.Hayami, S., Komatsu, Y., Shimizu, T., Kamihata, H. and Lee, Y.H.: Spin-crossover in cobalt (II) compounds containing terpyridine and its derivatives. Coord. Chem. Rev. 255, 1981 (2011).
28.Cowan, M.G., Olguín, J., Narayanaswamy, S., Tallon, J.L. and Brooker, S.: Reversible switching of a cobalt complex by thermal, pressure, and electrochemical stimuli: abrupt, complete, hysteretic spin crossover. J. Am. Chem. Soc. 134, 2892 (2011).
29.Palion-Gazda, J., Świtlicka-Olszewska, A., Machura, B., Grancha, T., Pardo, E., Lloret, F. and Julve, M.: High-Temperature Spin Crossover in a Mononuclear Six-Coordinate Cobalt(II) Complex. Inorg. Chem. 53, 10009 (2014).
30.Guo, Y., Yang, X.-L., Wei, R.-J., Zheng, L.-S. and Tao, J.: Spin Transition and Structural Transformation in a Mononuclear Cobalt (II) Complex. Inorg. Chem. 54, 7670 (2015).
31.Hayami, S., Karim, M.R. and Lee, Y.H.: Magnetic Behavior and Liquid‐Crystal Properties in Spin‐Crossover Cobalt (II) Compounds with Long Alkyl Chains. Eur. J. Inorg. Chem. 2013, 683 (2013).
32.Hayami, S., Kato, K., Komatsu, Y., Fuyuhiro, A. and Ohba, M.: Unique spin transition and wide thermal hysteresis loop for a cobalt (II) compound with long alkyl chain. Dalton Trans. 40, 2167 (2011).
33.Miller, R.G., Narayanaswamy, S., Tallon, J.L. and Brooker, S.: Spin crossover with thermal hysteresis in cobalt (II) complexes and the importance of scan rate. New J. Chem. 38, 1932 (2014).
34.Tao, J., Maruyama, H. and Sato, O.: Valence Tautomeric Transitions with Thermal Hysteresis around Room Temperature and Photoinduced Effects Observed in a Cobalt−Tetraoxolene Complex. J. Am. Chem. Soc. 128, 1790 (2006).
35.Bhar, K., Khan, S., Costa, J.S., Ribas, J., Roubeau, O., Mitra, P. and Ghosh, B.K.: Crystallographic Evidence for Reversible Symmetry Breaking in a Spin‐Crossover d7 Cobalt (II) Coordination Polymer. Angew. Chem. 124, 2184 (2012).
36.Agustí, G., Bartual, C., Martínez, V., Muñoz-Lara, F.J., Gaspar, A.B., Muñoz, M.C. and Real, J.A.: Polymorphism and “reverse” spin transition in the spin crossover system [Co (4-terpyridone) 2](CF 3 SO 3) 2· 1H 2 O. New J. Chem. 33, 1262 (2009).
37.Galet, A., Gaspar, A.B., Muñoz, M.C. and Real, J.A.: Influence of the Counterion and the Solvent Molecules in the Spin Crossover System [Co(4-terpyridone)2]Xp⊙nH2O. Inorg. Chem. 45, 4413 (2006).
38.Gaspar, A.B., Muñoz, M.C., Niel, V. and Real, J.A.: [CoII(4-terpyridone)2]X2: A Novel Cobalt(II) Spin Crossover System [4-Terpyridone= 2, 6-Bis (2-pyridyl)-4 (1 H)-pyridone]. Inorg. Chem. 40, 9 (2001).
39.Beckmann, U. and Brooker, S.: Cobalt (II) complexes of pyridazine or triazole containing ligands: spin-state control. Coord. Chem. Rev. 245, 17 (2003).
40.Amolegbe, S.: Supramolecular architectures self-assembled using long chain alkylated spin crossover cobalt (II) compounds. Chem. Commun. 53, 4685 (2017).
41.Constable, E.C., Dunphy, E.L., Housecroft, C.E., Neuburger, M., Schaffner, S., Schaper, F. and Batten, S.R.: Expanded ligands: bis (2, 2′: 6′, 2 ″-terpyridine carboxylic acid) ruthenium (II) complexes as metallosupramolecular analogues of dicarboxylic acids. Dalton Trans ., 4323 (2007).
42.PRO, R.O.D.C.: Rigaku Oxford Diffraction. Yarnton, England (2015).
43.Sheldrick, G.M.: SHELXT–Integrated space-group and crystal-structure determination. Acta Crystallogr. Sec. A 71, 3 (2015).
44.Sheldrick, G.M.: Crystal structure refinement with SHELXL. Acta Crystallogr. Sec. C 71, 3 (2015).
45.Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A. and Puschmann, H.: OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 42, 339 (2009).
46.Spek, A.L.: Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 36, 7 (2003).
47.Macrae, C.F., Edgington, P.R., McCabe, P., Pidcock, E., Shields, G.P., Taylor, R., Towler, M. and Streek, J.v.d.: Mercury: visualization and analysis of crystal structures. J. Appl. Crystallogr. 39, 453 (2006).
48.Bain, G.A. and Berry, J.F.: Diamagnetic corrections and Pascal’s constants. J. Chem. Educ. 85, 532 (2008).
49.Nakamoto, K.: Infrared and R aman Spectra of Inorganic and Coordination Compounds. Handbook of Vibrational Spectroscopy (2006).
50.Roy, S., Choubey, S., Bhar, K., Sikdar, N., Costa, J.S., Mitra, P. and Ghosh, B.K.: Counter anion dependent gradual spin transition in a 1D cobalt(II) coordination polymer. Dalton Trans. 44, 7774 (2015).
51.Kremer, S., Henke, W. and Reinen, D.: High-spin-low-spin equilibriums of cobalt (2+) in the terpyridine complexes Co(terpy)2X2.nH2O. Inorg. Chem. 21, 3013 (1982).
52.Pai, S., Schott, M., Niklaus, L., Posset, U. and Kurth, D.G.: A study of the effect of pyridine linkers on the viscosity and electrochromic properties of metallo-supramolecular coordination polymers. J. Mat. Chem. C 6, 3310 (2018).
53.Kilner, C.A. and Halcrow, M.A.: An unusual discontinuity in the thermal spin transition in [Co (terpy)2][BF4]2. Dalton Trans. 39, 9008 (2010).
54.Slichter, C. and Drickamer, H.: Pressure‐induced electronic changes in compounds of iron. The Journal of Chemical Physics 56, 2142 (1972).
55.Harris, C., Lockyer, T., Martin, R., Patil, H. and Sinn, E.: Five-and six-coordinated complexes of cobalt (II) with 2, 2’, 2’-terpyridyl: Unusual structure and magnetism. Aust. J. Chem. 22, 2105 (1969).

Keywords

Temperature induced spin crossover behaviour in mononuclear cobalt(II) bis terpyridine complexes

  • Venkata Nikhil Raj M. (a1), Kishalay Bhar (a1), Tanveer A. Khan (a1), Surbhi Jain (a1), Franc Perdih (a2), Partha Mitra (a3) and Anuj K. Sharma (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed