Skip to main content Accessibility help

Synthesis of Mixed AuZn Nanoparticles by Spark Discharge Technique

  • Shubhra Kala (a1) and F. E. Kruis (a2)


In this study, feasibility of spark discharge technique to generate mixed metal nanoparticles is demonstrated. Two immiscible metals Au and Zn are selected to prepare AuZn mixed nanoparticles. Ignition of spark between Au and Zn electrodes under normal pressure, in the presence of carrier gas, leads to formation of mixed nanoparticles by condensation and nucleation. Online particle size-distribution is monitored by a scanning mobility particle sizer on changing carrier gas flow rate and capacitor charging current during co-sparking between Au and Zn electrodes. The technique provides flexibility to generate binary mixture of AuZn nanoparticles in the size range of 10-80 nm. Distribution of Au and Zn in the prepared mixed nanoparticles is mapped by scanning electron microscopy and high resolution electron microscopy.


Corresponding author

a)Corresponding author:


Hide All
1.Haldar, K. K., Sen, T. and Patra, A., J. Phys. Chem. C 114, 4869 (2010).
2.Ferrando, R., Jellinek, J. and Johnston, R.L., Chem. Rev 108, 845 (2008).
3.Almtoft Pagh, K., Ejsing, A. M., Bottiger, J., Chevallier, J., Schell, N. and S Martins, R. M., J. Mater. Res. 22(4), 1018 (2007).
4.Radic, N. and Stubicar, M., J. Mater. Sci. 33, 3401(1998).
5.Cagran, C., Wilthan, B. and Pottlacher, G., Thermochim. Acta 445, 104 (2006).
6.Liang, L. H., Yang, G. W. and Li, B., J. Phys. Chem. B 109, 1608 (2005).
7.Zeng, J., Yang, J., Yang Lee, J. and Zhou, W., J. Phys. Chem. B 110, 24606 (2006).
8.Devarajan, S., Bera, P. and Sampath, S., J. Colloid. Interface Sci. 290, 117 (2005).
9.Kang, H-K and Bong Kang, S., Scr. Mater. 49, 1169 (2003).
10.Tabrizi, N. S., Xu, Q., van der Pers, N. M., Lafont, U. and Schmidt-Ott, A., J. Nanopart. Res. 11, 1209 (2009).
11.Tabrizi, N. S., Xu, Q., van der Pers, N. M. and Schmidt-Ott, A., J. Nanopart. Res. 12, 247 (2010).
12.Kala, S., Theissmann, R. and Kruis, F. E., J. Nanopart. Res. 15, 1963 (2013)
13.Okamoto, H., J. Phase Equ. Diff. 27(4), 427 (2006).
14.Pemsler, J. P. and Rapperport, E. J., Metal. Trans. 2, 79 (1971)
15.Helsper, C., Mölter, W., Löffler, F., Wadenphol, C., and Kaufmann, S., Atmos. Environ., Part A 27A, 1271 (1993)
16.Kala, S., Rouenhoff, M., Theissmann, R. and Kruis, F. E., Nanoparticles from the gas phase, Nanoscience and Technology, Springer- Verlag, Berlin Heidelberg (2012) pp 20.
17.Dixkens, J. and Fissan, H., Aerosol Sci. Technol. 30, 438 (1999).
18.Juárez-Ruiz, E., Pal, U., Lombardero-Chartuni, J. A., Medina, A. and Ascencio, J. A., Appl. Phys. A (2007)
19.Wittmaack, K., J. Nanopart. Res. 9, 191 (2007).
20.Sutter, E. and Sutter, P., Nanotechnology 22, 2956051(2011).


Synthesis of Mixed AuZn Nanoparticles by Spark Discharge Technique

  • Shubhra Kala (a1) and F. E. Kruis (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed