Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-07-01T18:41:13.607Z Has data issue: false hasContentIssue false

Synthesis and characterization of novel functionalized perarylated polysiloxane for proton exchange membrane fuel cells

Published online by Cambridge University Press:  13 November 2019

Guillermo M. González Guerra*
Affiliation:
Universidad de Guanajuato. Depto. de Química. Cerro de la Venada s/n, Pueblito de Rocha. C.P. 36040, Guanajuato, México.
Alejandro Alatorre-Ordaz
Affiliation:
Universidad de Guanajuato. Depto. de Química. Cerro de la Venada s/n, Pueblito de Rocha. C.P. 36040, Guanajuato, México.
Gerardo González Garcia
Affiliation:
Universidad de Guanajuato. Depto. de Química. Noria Alta s/n, Noria Alta. C.P.36050, Guanajuato, México.
Jesus S. Jaime-Ferrer
Affiliation:
CIATEC, AC, Omega no. 201 Col. Industrial Delta, C.P. 37545 León, Gto.
Get access

Abstract

This work presents the synthesis and characterization of a pearylated polysiloxane material (PAP) from a polycondensation reaction, followed by functionalization with HClSO3 by an electrophilic substitution reaction. According to the characterization techniques applied, a sulfonated pearylated polysiloxane was also obtained, (SPAP). The purpose of this sulfonated material is to obtain an ionomer able to be applied in hydrogen fuel cells of the proton exchange membrane kind (PEMFC). The reaction to produce the polysiloxane precursor was carried out with the commercial reagents: PhSiCl3, Ph2SiCl2 and Ph3SiCl in anhydrous THF at 75 °C and the SPAP material was obtained by sulfonation of the precursor with chlorosulfonic acid. PAP and SPAP were characterized by 1H, NMR for liquids, 29Si NMR for solids, IR-ATR, SEM, and cyclic voltammetry. The NMR 29Si spectra show that PAP and PAPS contain crosslinking regions due to PhSiCl3, growing chain zones due to Ph2SiCl2 and polymer termination zones due to Ph3SiCl, obtaining a mixture of siloxanes. The analysis by cyclic voltammetry indicates that by integrating the area under the curve of the adsorption peaks of H2, a value of 0.062 mC/cm2 is obtained, a value close to the commercial ionomer of Nafion®.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

Clarson, S. J., Semlyen, J. A., Siloxane Polymers, (Prentice Hall, 1993) p. 63.Google Scholar
Auner, N., Weis, J., Organosilicon Chemistry III: From Molecules to Materials. (John Wiley & Sons, Germany, 1998) p. 85.Google Scholar
Rappoport, Z., Apeloig, Y., Chemistry of organic silicon compounds, (John Wiley & Sons, 1998) p. 40.CrossRefGoogle Scholar
Clarson, S. J., Fitzgerald, J. J., Owen, M. J., Smith, S. D., (American Chemical Society, Washington, DC, 2000) p. 121.Google Scholar
Mark, J. E., Prog. Polym. Sci. 28, 8 (2003)-CrossRefGoogle Scholar
Mark, J. E. Physical Properties of Polymers, (Cambridge University Press, Cambridge, 2003) p. 53.Google Scholar
Hardman, B., Torkelson, A., Encyclopedia of Polymers Science and Engineering, (Wiley-Interscience, New York, 1987) p. 37.Google Scholar
Lentz, C. W., Ind. Res. & Dev. Adv. Polym. Sci, 139 (1980).Google Scholar
Rehahn, M., Mattice, W. L., Suter, U. W., Adv. Polym. Sci. 131, 132 (1997).Google Scholar
Bahar, I., Zuniga, I., Dodge, R., Mattice, W. L., Macromolecules. 24, 10 (1991).Google Scholar
Barton, T. J., Boudjouk, P., Am. Chem. Soc. 224 (1990).Google Scholar
Gubler, L., Kuhn, H., Schmidt, T. J., Fuel Cells. 4,3 (2004).10.1002/fuce.200400019CrossRefGoogle Scholar
Gubler, L., Gürsel, S. A., Scherer, G. C., Fuel Cells, 5,3 (2005).CrossRefGoogle Scholar
Gubler, L., Prost, N., Gürsel, S. A., Scherer, G. C., Solid State Ionics. 176,39 (2005).CrossRefGoogle Scholar
Alberti, G., Casciola, M., Annu. Rev. Mater. Res. 33,1 (2003).CrossRefGoogle Scholar
Kreuer, K. D., Solid state ionics, 97,1-4 (1997).CrossRefGoogle Scholar
Ciureanu, M., Wang, H., J. Electrochem. Soc. 146,11 (1999).CrossRefGoogle Scholar
Miyatake, K., Chikashige, Y., Watanabe, M., Macromolecules, 36,26 (2003).CrossRefGoogle Scholar
Hwang, H. Y., Koh, H. C., Rhim, J. W., Nam, S. Y., Desalination, 233, 1-3 (2008).CrossRefGoogle Scholar
Peres, B., Sena, M. E., Mater. Lett. 61, (2007).Google Scholar
Wang, S., Zeng, Z., Yang, S., Weng, L. T., Wong, P. C., Ho, K., Macromolecules, 33, 9 (2000).Google Scholar
Elabd, Y. A., Napadensky, E., Polymer. 45,9 (2004).CrossRefGoogle Scholar