Skip to main content Accessibility help
×
Home

Synthesis and characterization of bimetallic noble metal nanoparticles for biomedical applications

  • Prem C. Pandey (a1) and Govind Pandey (a2)

Abstract

We report herein a facile approach to synthesize processable bimetallic nanoparticles (Pd-Au/AuPd/Ag-Au/Au-Ag) decorated Prussian blue nanocomposite (PB-AgNP). The presence of cyclohexanone/formaldehyde facilitates the formation of functional bimetallic nanoparticles from 3-aminopropyltrimethoxysilane (3-APTMS) capped desired ratio of hetero noble metal ions. The use of 3-APTMS and cyclohexanone also enables the synthesis of polycrystalline Prussian blue nanoparticles (PBNPs). As synthesized PBNPs, Pd-Au/Au-Pd/Ag-Au/Au-Ag enable the formation of nano-structured composites displaying better catalytic activity than that recorded with natural enzyme. The nanomaterials have been characterized by Uv-Vis, FT-IR and Transmission Electron Microscopy (TEM) with following major findings: (1) 3-APTMS capped noble metal ions in the presence of suitable organic reducing agents i.e.; 3 glycidoxypropyltrimethoxysilane (GPTMS), cyclohexanone and formaldehyde; are converted into respective nanoparticles under ambient conditions, (2) the time course of synthesis and dispersibility of the nanoparticles are found as a function of organic reducing agents, (3) the use of formaldehyde and cyclohexanone in place of GPTMS with 3-APTMS outclasses the other two in imparting better stability of amphiphilic nanoparticles with reduced silanol content, (4) simultaneous synthesis of bimetallic nanoparticles under desired ratio of palladium/gold and silver/ gold cations are recorded, (5) the nanoparticles made from the use of 3-APTMS and cyclohexanone enable the formation of homogeneous nanocomposite with PBNP as peroxidase mimetic representing potential substitute of peroxidase enzyme. The peroxidase mimetic ability has been found to vary as a function of 3-APTMS concentration revealing the potential role of functional metal nanoparticles in bioanalytical applications.

Copyright

Corresponding author

References

Hide All
1Kelly, L. K., Coronado, E., Zhao, L. L. and Schatz, G. C., J. Phys. Chem. B., 2003, 107, 668677.
2Evanoff, D. D. and Chumanov, G., ChemPhysChem. 2005, 6, 12211231.
3Wu, J., Tan, L. H., Hwang, K., Xing, H., Wu, P., Li, W. and Lu, Y., J. Am. Chem. Soc. 2014, 136, 1519515202.
4linand, Q.Sun, Z., J. Phys. Chem. C. 2011, 115, 14741479.
5Panacek, A., Prucek, R., Hrbac, J., Neve-cena, T., Steffcova, J., Zboril, R. and Kvitek, L., Chem. Mater. 2014, 26, 13321339.
6Baruah, B., Gabriel, G. J., Akbashev, M. J. and Booher, M. E., Langmuir, 2013, 29, 42254234.
7Panacek, A., Kvitek, L., Prucek, R., Kolar, M., Vecerova, R., Pizurova, N., Sharma, V. K., Nevecna, T. and Zboril, R., J. Phys. Chem. B. 2006, 110, 1624816253.
8Rizzello, L. and Pompa, P. P., Chem. Soc. Rev. 2014, 43, 15011518.
9Niu, A., Han, Y., Wu, J., Yu, N. and Xu, Q., J. Phys. Chem. C., 2010, 114, 1272812735.
10Sun, Y. and Xia, Y., Science, 2002, 298, 21762179.
11Li, Y., Wu, Y. and Ong, B. S., J. Am. Chem. Soc, 2005, 127, 32663267.
12Chernousova, S. and Epple, M., Angew. Chem., Int. Ed. 2013, 52, 16361653.
13Lu, L., Wang, H., Zhou, Y., Xi, S., Zhang, H., Hu, J. and Zhao, B.,Chem. Commun., 2002, 144145.
14Li, Z. Y., Yuan, J., Chen, Y., Palmer, R. E. and Wilcoxon, J. P., Adv. Mater. 2005, 17, 28852888.
15Ferrando, R., Jellinek, J. and Johnston, R. L.,Chem. Rev. 2008, 108, 845910.
16Lazarus, L. L., Riche, C. T., Marin, B. C., Gupta, M., Malmstadt, N. and Brutchery, R. L., ACS Appl. Mater. Interfaces., 2012, 4, 30773083.
17Bu, Y. and Lee, S., ACS Appl. Mater. Interfaces. 2012, 4, 39233931.
18Li, C. H., Jamison, A. C., Rittikulsittichai, S., Lee, T. C. and Lee, T. R., ACS Appl. Mater. Interfaces, 2014, 6, 1994319950.
19Sharma, M., Pudasaini, P. R., Zepeda, F. R., Vinogradova, E. and Ayon, A. A., ACS Appl. Mater. Interfaces, 2014, 6, 1547215479.
20Sun, J., Yang, F., Zhao, D., Chen, C. and Yang, X., ACS Appl. Mater. Interfaces. 2015, 7, 68606866.
21Shi, J., Chem. Rev. 2013, 113, 21392181.
22Bhargava, S. K., Booth, J. M., Agrawal, S., Coloe, P. and Kar, G., Langmuir, 2005, 21, 59495956.
23Newman, J. D. S. and Blanchard, G. J., Langmuir 2006, 22, 58825887.
24Pandey, P. C. and Singh, Richa, RSC Adv., 2015, 5, 49671–45679.
25Sainsbury, T., Ikuno, T., Okawa, D., Pacile, D., Frechet, J. M. J. and Zettl, A., J. Phys. Chem. C., 2007, 111, 1299212999.
26Pandey, P. C. and Chauhan, D. S., Analyst, 2012, 137, 376385.
27Pandey, P. C., Pandey, A. K. and Pandey, G., J. Nanosci. Nanotechnol. 2014, 14, 66066613.
28Pandey, P. C. and Pandey, G.,J. Mater. Chem. B. 2014, 2, 33833390.
29Pandey, P. C., Singh, R. and Pandey, A. K., Electrochim. Acta. 2014, 138, 163173.
30Pandey, P. C. and Singh, R., RSC Adv. 2015, 5, 1096410973.
31Pandey, P. C., Panday, D. and Pandey, G., RSC Adv. 2014, 4, 6056360572.
32Pandey, P. C. and Pandey, A. K., Electrochim. Acta. 2013, 87, 18.
33Pandey, P. C. and Pandey, A. K., Analyst, 2013, 138, 22952301.
34Wei, H. and Wang, E., Anal. Chem. 2008, 80, 22502254.
35Jv, Y., Li, B. and Cao, R., Chem. Commun. 2010, 46, 80178019.
36Jiang, H., Chen, Z., Cao, H. and Huang, Y., Analyst, 2012, 137, 55605564.
37Zhang, L., Han, L., Hu, P., Wang, L. and Dong, S., Chem. Commun., 2013, 49, 1048010482.
38He, W., Wu, X., Liu, J., Hu, X., Zhang, K., Hou, S., Zhou, W. and Xie, S., Chem.Mater., 2010, 22, 29882994.
39Sitnikova, N. A., Komkova, M. A., Khomyakova, I. V., Karyakina, E. E. and Karyakin, A., Anal. Chem., 2014, 86, 41314134.
40Tacconi, N. R. and Rajeshwar, K., Chem. Mater.2003, 15, 30463062.
41Karyakin, A. A., Puganova, E. A., Budashov, I. A., Kurochkin, I. N., Karyakina, E. E., E. E.; Levchenko, V. A., Matveyenko, V. N. and Varfolomeyev, S. D., Anal.Chem. 2004, 76, 474478.
42Pandey, P. C. and Singh, R., J. Nanosci. Nanotechnol, 2015, 15, 57495759.
43Cushing, B. L., Kolesnichenko, V. L. and Connor, C. J., Chem. Rev, 2004, 104, 38933946.
44Daniel, M. C. and Astruc, D., Chem. Rev, 2004, 104, 293346.
45Kango, S., Kalia, S., Celli, A., Njuguna, J., Habibi, Y. and Kumar, R., Prog. Polym. Sci. 2013, 38, 12321261.
46Chaudhari, R. G. and Paria, S., Chem. Rev. 2012, 112, 23732433.
47Wight, A. P. and Davis, M. E., Chem. Rev. 2002, 102, 35893614.
48Tewari, Y. B., Schantz, M. M., Pandey, P. C., Rekharsky, M. V. and Goldberg, R. N., J. Phys.Chem. 1995, 99, 15941601.
49Weetall, H. H., Appl.Biochem. Biotechnol., 1993, 41, 157188.
50Wong, Y. N., Boonton, N. J., U. S. Patent, 5, 601, 979, 1997.
51Pandey, P. C., Upadhyay, S. and Pathak, H. C., Electroanalysis, 1999, 11, 5965.
52Pandey, P. C., Upadhyay, S., Pathak, H. C., Tiwari, I. and Tripathi, V. S., Electroanalysis, 1999, 11, 12511258.
53Pandey, P. C., Upadhyay, S. and Pathak, H. C., Sens. Actuators. B., 1999, 60, 8389.
54Pandey, P. C., Upadhyay, S., Shukla, N. K. and Sharma, S., Biosens. Bioelectron., 2003, 18, 12571268.
55Pandey, P. C. and Singh, B., Biosens. Bioelectron., 2008, 24, 842848.
56Pandey, P. C. and Upadhyay, S., Sens. Actuators. B., 2001, 78, 148155.
57Pandey, P. C., Upadhyay, S. and Sharma, S., J. Electrochem. Soc., 2003, 150, H85H92.
58Pandey, P. C. and Prakash, A., J. Electroanal. Chem., 2014, 729, 95102.
59Gonzalez, C. M., Liu, Y. and Scaiano, J. C., J. Phys. Chem. C., 2009, 113, 1186111867.
60Bayliss, P., Erd, D. C., Mrose, M. E., Sabina, A. P. and Smith, D. K., Mineral Powder Diffraction FileData Book JCPDS, 1986.
61Chen, H., Li, Y., Zhang, F., Zhang, G., Fan, X. and J. Mater. Chem., 2011, 21, 1765817661.
62Arun, T., Prakash, R. and Joseyphus, J., J. Magn. Magn. Mater. 2013, 345, 100105.
63Gao, L., Zhuang, J., Nie, L., Zhang, J., Zhang, Y., Gu, N., Wang, T., Feng, J., Yang, D., Perrett, S. and Yan, X., Nat. Nanotechnol. 2007, 2, 577583.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed