Skip to main content Accessibility help

Study of the optical properties of dielectric-graphene-dielectric multilayer quasi-periodic structures: Thue-Morse case

  • I. A. Sustaita-Torres (a1), C. Sifuentes-Gallardo (a1), J. R. Suárez-López (a2), I. Rodríguez-Vargas (a2) and J. Madrigal-Melchor (a2)...


Potential applications in optoelectronics had generated a great interest on the study of graphene optical properties. Along with this, graphene has exceptional properties such as high mobility and optical transparency, flexibility, mechanical robustness, etc. Due to these properties, graphene could be used in different devices such as transparent conductors, organic light-emitting diodes, photodetectors, touch screens, saturable absorbers and ultrafast lasers. A transfer-matrix method is used in order to calculate graphene optical properties, such as transmission, and absorption in the infrared region. The quasi-periodic structure consists in intercalated graphene sheets between two consecutives dielectrics. The dielectric materials follow the Thue-Morse sequence (ThMo). The graphene sheets are described by the optical conductivity considering interband and intraband transitions. The structure of the spectra depends strongly on the number of sequence generation, width of the different dielectrics and dielectric permittivity. In our case, the infrared region corresponds to a chemical potential greater than kT. In the calculated spectra, the geometrical properties of the Thue-Morse sequence can be observed. We obtain absorption bands well defined.


Corresponding author

*Corresponding author email:


Hide All
1. Geim, A.K. and Novoselov, K.S.., Nature Materials, 2007. 6(3): p. 183191.
2. Geim, A.K. and Klim, P., Scientific American, 2008. 298: p. 9097.
3. Castro Neto, A.H., et al. ., Review of modern physics, 2009. 18: p. 109162.
4. Geim, A.K., Science, 2009. 324(5934): p. 15301534.
5. Novoselov, K.S., et al. ., Nature, 2012. 490(7419): p. 192200.
6. Bonaccorso, F., et al. ., Nature Photonics, 2010. 4(9): p. 611622.
7. Sensale-Rodriguez, B., Journal of Lightwave Technology, 2015. 33(5): p. 11001108.
8. Nair, R.R., et al. ., Science, 2008. 320: p. 1308.
9. Melorose, J., P. R., and , C. S., Optics of aperiodic structures. Vol. 1. 2015.
10. Macia, E., Reports on Progress in Physics, 2005. 69(2): p. 397441.
11. Moretti, L. and Mozella, V., Optical Thue-Morse System for Nanophotonics Applications, in Optics of aperiodic structures: fundamentals and device applications, Negro, L.D., Editor. 2014, PAN Stanford. p. 179.
12. Dal Negro, L., et al. ., Applied Physics Letters, 2004. 84(25): p. 51865188.
13. Meradi, K.A. and Tayeboun, F.., Journal of Russian Laser Research, 2015. 36(4): p. 364370.
14. Boriskina, S.V., Gopinath, A., and Dal Negro, L.., Optics Express, 2008. 16(23): p. 1881318826.
15. Peng, R.W., Mazzer, M., and Barnham, K.W.J.., Applied Physics Letters, 2003. 83(4): p. 770772.
16. Dal Negro, L., et al. ., Applied Physics Letters, 2005. 86(26): p. 13.
17. Tenorio, B.A. and Mora-Ramos, M.E.., Journal of Nano Reseach. 2009. 5: p. 6978.
18. Yeh, P., Optical waves in layered media. 2005 , New Jersey: John Wiley & Sons, Inc.
19. Markos, P. and Soukoulis, C.M.., Wave Propagation, from electrons to photonic crystals and left-handed materials: Princenton, 2008.
20. Falkovsky, L.A., Journal of Physics: Conference Series, 2008. 129: p. 012004.
21. Trabelsi, Y., et al. ., Photonic Sensors, 2013. 3(3): p. 246255.
22. Chen, F. and Yang, X.., Physica Status Solidi (B) Basic Research, 2005. 242(12): p. 25092514.
23. Coelho, I.P., Vasconcelos, M.S., and Bezerra, C.G.., Physics Letters, Section A: General, Atomic and Solid State Physics, 2010. 374(13-14): p. 15741578.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed