Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-19T00:20:31.739Z Has data issue: false hasContentIssue false

Study of nanostructured HfN coatings using layers arrangement

Published online by Cambridge University Press:  08 September 2017

L. García González
Affiliation:
Centro de Investigación en Micro y Nanotecnología, Universidad Veracruzana, Veracruz, 94294, Boca del Río, Veracruz, México.
S.R. Vásquez García*
Affiliation:
Posgrado de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, 58000, Morelia, Michoacán, México.
D.J. Araujo-Pérez
Affiliation:
Centro de Investigación en Micro y Nanotecnología, Universidad Veracruzana, Veracruz, 94294, Boca del Río, Veracruz, México.
A. K. García Rueda
Affiliation:
Centro de Investigación en Micro y Nanotecnología, Universidad Veracruzana, Veracruz, 94294, Boca del Río, Veracruz, México.
L. Zamora Peredo
Affiliation:
Centro de Investigación en Micro y Nanotecnología, Universidad Veracruzana, Veracruz, 94294, Boca del Río, Veracruz, México.
N. Flores Ramírez
Affiliation:
Facultad de Ingeniería en Tecnología de la Madera, Edificio D, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
L. Domratcheva Lvova
Affiliation:
Facultad de Ingeniería en Tecnología de la Madera, Edificio D, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
T. Hernández Quiroz
Affiliation:
Centro de Investigación en Micro y Nanotecnología, Universidad Veracruzana, Veracruz, 94294, Boca del Río, Veracruz, México.
J. Hernández Torres
Affiliation:
Centro de Investigación en Micro y Nanotecnología, Universidad Veracruzana, Veracruz, 94294, Boca del Río, Veracruz, México.
Get access

Abstract

In the present investigation, nanostructured ceramic HfN coatings were deposited onto silicon (100) wafer by magnetron sputtering DC method, from a metallic Hf target. The deposition process followed by a similar pattern as the multilayer film deposition, using cycles with the nitrogen gas turned on for 90 s and turned off for 15 s; four sets of samples were obtained using 5, 10, 15 and 20 cycles. The X ray diffraction (XRD) identified the presence of two different cubic crystalline phases of HfN, corroborated by Rietveld analysis. The Vickers hardness test showed that the hardness values increases with more cycles, due to a higher compressive stress evaluated by Stoney formula. All samples were investigated with no visible fracture until 10 grf for the 5 cycles sample; however, no fractures were visible at all for the 15 and 20 cycle samples for that given load, instead fractures started to appear at 25grf for the 10 and 15 cycles coating. Eventually it is distinguished that, the thickness and morphology of the coatings were measured by field emission scanning electron microscopy FE-SEM. As well as, the thickness increased from 0.4 µm to almost 1.33 µm as the number of cycles also increased, where we can observe the formation of columnar growth, moreover it is possible to distinguish the formation of two different clusters which might be related to different phases.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Friedrich, C., Berg, G., Broszeit, E., and Berger, C., Thin Solid Films 290–291, 216 (1996).CrossRefGoogle Scholar
Komarov, F. F., Konstantinov, V. M., Kovalchuk, A. V., Konstantinov, S. V., and Tkachenko, H. A., Wear 352–353, 92 (2016).CrossRefGoogle Scholar
Lackner, J. M., Waldhauser, W., Major, R., Major, L., and Major, B., Surf. Coatings Technol. 201, 4090 (2006).CrossRefGoogle Scholar
Mitterer, C., in Compr. Hard Mater. (2014), pp. 449467.CrossRefGoogle Scholar
Thakur, A. and Gangopadhyay, S., Tribol. Int. 102, 198 (2016).Google Scholar
Caicedo, J. C. Prieto, A., P., Caicedo, J. M., Bejarano, G. Balogh, G., A. G., and Gottschalk, S., Rev. Colomb. Física 37, 388 (2005).Google Scholar
Cheary, R. W. and Coelho, A., J. Appl. Crystallogr. 25, 109 (1992).Google Scholar
Cheary, R. W., Coelho, a. a., and Cline, J. P., J. Res. Natl. Inst. Stand. Technol. 109, 1 (2004).Google Scholar
Korsunsky, A. M., McGurk, M. R., Bull, S. J., and Page, T. F., Surf. Coatings Technol. 99, 171 (1998).Google Scholar
Shah, H. N., Jayaganthan, R., and Kaur, D., Surf. Eng. 26, 629 (2010).CrossRefGoogle Scholar
Tsai, D.-C., Huang, Y.-L., Lin, S.-R., Jung, D.-R., and Shieu, F.-S., Appl. Surf. Sci. 257, 3969 (2011).Google Scholar
Priestland, C. and Hersee, S. D., Vacuum 22, 103 (1972).Google Scholar
Stoney, G. G., Proc. R. Soc. A Math. Phys. Eng. Sci. 82, 172 (1909).Google Scholar