Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-19T15:22:42.968Z Has data issue: false hasContentIssue false

Study and optimization of the photoluminescence of amorphous silicon carbide thin films

Published online by Cambridge University Press:  16 January 2019

Maricela Meneses*
Affiliation:
Instituto Nacional de Astrofísica, Óptica y Electrónica, INAOE, Tonantzintla, Puebla72840, México.
Mario Moreno
Affiliation:
Instituto Nacional de Astrofísica, Óptica y Electrónica, INAOE, Tonantzintla, Puebla72840, México.
Alfredo Morales
Affiliation:
Instituto Nacional de Astrofísica, Óptica y Electrónica, INAOE, Tonantzintla, Puebla72840, México. Centro de Investigación en Materiales Avanzados, S.C., CIMAV-Unidad Monterrey, México.
Alfonso Torres
Affiliation:
Instituto Nacional de Astrofísica, Óptica y Electrónica, INAOE, Tonantzintla, Puebla72840, México.
Pedro Rosales
Affiliation:
Instituto Nacional de Astrofísica, Óptica y Electrónica, INAOE, Tonantzintla, Puebla72840, México.
Israel Vivaldo
Affiliation:
Benemerita Universidad Autónoma de Puebla, FCE, BUAP, 72000, México.
Get access

Abstract:

In this work we report the study of the effect of the deposition parameters on the photoluminescence (PL) intensity of hydrogenated amorphous silicon-carbide (a-SiC:H) films deposited at very low temperature (150 °C) by Plasma Enhanced Chemical Vapor Deposition (PECVD). We have observed that the main deposition parameter that influences the wavelength emission peak is the methane/silane (CH4/SiH4) ratio used for the films deposition, due to a change on the film carbon content. On the other hand the deposition RF power affects the PL intensity, without a change in the PL emission peak. Also we have studied the effect of the film thickness on the PL intensity and we have observed an optimal film thickness.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Rahman, M. M., Yang, C. Y., Sugiarto, D., Byrne, A. S., Ju, M., Tran, K., ...&Stickle, W. F. (1990) J. Appl. Phys. 67(11), 7065-7070.CrossRefGoogle Scholar
Canham, L T 1990 Appl. Phys. Lett. 57 1046.CrossRefGoogle Scholar
Zhao, X., Schoenfeld, O., Kusano, J., Aoyagi, Y., & Sugano, T. (1994) J. Appl. Phys. 33(5A), L649.CrossRefGoogle Scholar
Gallis, S., Nikas, V., Suhag, H., Huang, M., &Kaloyeros, A. E. (2010) J. Appl. Phys. 97(8), 081905.Google Scholar
Zhang, E., Wang, G., Long, X., & Wang, Z. (2014) B. Mater SCI, 37(6), 1249-1253.CrossRefGoogle Scholar
Cheng, Q., Xu, S., Long, J. D., Ni, Z. H., Rider, A. E., & Ostrikov, K. (2008) J. Appl. Phys. 41(5), 055406.Google Scholar
Daouahi, M., Rekik, N. J. Phys. Chem. C 116(39) (2012)2101921025.CrossRefGoogle Scholar
Swain, B. P. (2006) Surf. Coatings Tech. 201(3-4), 1589-1593.CrossRefGoogle Scholar
Daves, W., Krauss, A., Behnel, N., Häublein, V., Bauer, A., Frey, L. Thin Solid Films 519 (18) (2011) 58925898.CrossRefGoogle Scholar
Vivaldo, I., Moreno, M., Torres, A., Ambrosio, R., Rosales, P., Carlos, N., ...&Benítez, A. (2017) J. Lumin. 190, 215-220.CrossRefGoogle Scholar
Swain, B. Surf. Coatings Tech. 201(3-4)(2006)15891591.CrossRefGoogle Scholar
Tanaka, K. (1999). Amorphous silicon. John Wiley & Sons Inc.Google Scholar
Choi, W. K., & Gangadharan, S. (2000) Mater. Sci. Eng. B, 75(2-3), 174-176.CrossRefGoogle Scholar
Summonte, C., Rizzoli, R., Bianconi, M., Desalvo, A., Iencinella, D., & Giorgis, F. (2004) J. Appl. Phys. 96(7), 3987-3997.CrossRefGoogle Scholar
Li, M., Jiang, L., Sun, Y., Xiao, T., Xiang, P., & Tan, X. (2018) J. Alloys Compd. 753, 320-328.CrossRefGoogle Scholar
Pereyra, I., & Carreno, M. N. P. (1996) J. non-cryst. solids, 201(1-2), 110-118.CrossRefGoogle Scholar
Daves, W., Krauss, A., Behnel, N., Häublein, V., Bauer, A., Frey, L. Thin Solid Films 519(18) (2011) 58925898.CrossRefGoogle Scholar
Choi, W.K., Chan, Y.M., Ling, C.H., Lee, Y., Gopalakrishnan, R., Tan, K.L., J. Appl. Phys. 77 (2) (1995) 827.CrossRefGoogle Scholar
Sel, K., Akaoğlu, B., Atilgan, İ., &Katircioğlu, B. (2011). Solid-State Electronics, 57(1), 1-8.CrossRefGoogle Scholar
Street, R. A., Nickel, N. H., & Tsai, C. C. (1995). J. non-cryst. solids, 190(1-2), 33-37.CrossRefGoogle Scholar
Choi, W., Ong, T., Tan, L., Loh, F., and Tan, K., Journal of applied physics, vol. 83, no. 9, pp. 49684973, 1998.CrossRefGoogle Scholar
Yu, M., Yoon, S., Xu, S., Chew, K., Cui, J., Ahn, J., Zhang, Q., et al. , Thin Solid Films, vol. 377, pp. 177181, 2000.CrossRefGoogle Scholar