Skip to main content Accessibility help

Structural Characterization and computational approach to doped hafnium oxide nano crystals for thermo and photoluminescence applications

  • R. M. Radamés (a1) (a2), V. Z. Alejandro (a1) and M. Romero (a2)


Doped hafnium oxide (X-HfO2, X= Eu, Tb, Dy) thin films were deposited by experimental ultrasonic spray pyrolysis process. Doped Hf nano crystal (nc-X-Hf) embebed in the HfO2 matrix were obtained. The process was made at substrate temperature between 300 °C and 550 °C, showing at this higher temperature the monoclinic phase, which improve the dopants incorporation. Computational simulations were made to analyze molecular dynamics in advance to improve physical and chemical properties. Energy relaxation, and charge distribution behaviour demonstrated an atomic re-arranged to form the nano clusters of 5nm to 10 nm diameter. Vibrational modes were calculated. Photoluminescence (PL) spectra were obtained, as dopant function. Atomic Force Microscopy (AFM), X-ray diffraction and High Resolution Transmission Electron Microscopy (HRTEM) characterizations were made. Characteristics bright peaks appear in the Thermoluminescence (TL) spectra, and PL peak emission as well, of the Eu, Tb, Dy dopants in the HfO2 matrix. The results obtained show that nanocrystal structures embebed in a metal oxide matrix of HfO2 could be a prominent material to be used in radiation dosimetry, technological development, and radiological protection.


Corresponding author


Hide All
1. Reynoso Manríquez, R., Peláez-Rodríguez, A., Guzman Mendoza, J., Rivera Montalvo, T., Guzmán Olguín, J. C., Díaz Góngora, J. I., Cerón Ramírez, P. V., García Hipólito, M., Falcony, C.. Photo, cathode and thermoluminescent properties of dysprosium-doped HfO2 films deposited by ultrasonic spray pyrolysis. Applied Radiation and Isotopes, Volume 92, pages 9195 (2014).
2. Guzman Mendoza, J., Aguilar Frutis, M.A., Alarcon Flores, G., Garcıa Hipolito, M., Maciel Cerda, A., Azorın Nieto, J., Rivera Montalvo, T., Falcony, C.. Synthesis and characterization of hafnium oxide films for thermo and photoluminescence applications. Applied Radiation and Isotopes 68, 696699 (2010).
3. Cho, Y.J., Nguyen, N.V., Reicher, C.A., Ehrstein, J.R., Lee, B.H., Lee, J.C.., Spectroscopic ellipsometry characterization of high-k dielectric HfO2 thin films and the high-temperature annealing effects on their optical properties. Appl. Phys. Lett. 80, 1249 (2002).
4. Lange, S., Kiisk, V., Reedo, V., Kirm, M., Aarik, J., Sildos, I., 2006. Luminescence of RE ions in HfO2 thin films and some possible applications. Opt. Mater. 28, 1238.
5. Langlet, M., Joubert, J.C., In: Rao, C.N.R. (Ed.), Chemistry of Advanced Materials. Blackwell Science, Oxford, UK, pp. 55 (1993).
6. Ho, M. Y., Gong, H., Wilk, G. D., Busch, B. W., Green, M. L., Voyles, P. M., Muller, D. A., Bude, M., Lin, W. H., See, a., Loomans, M. E., Lahiri, S. K. and Räisänen, Petri I.. Journal of Applied Physics, Volume 93, number 3, 14771481 (2003).
7. Gilo, M. and Croitoru, N.. Thin Solid Films, 350, 203208 (1999).
8. Al-Kuhaili, M.F., Optical properties of hafnium oxide thin films and their application in energy efficient windows, J. Opt. Mater. 27, 383387 (2004).
9. Torchio, Philippe, Gatto, Alexandre, Alvisi, Marco, Albrand, Gérard, Kaiser, Norbert, and Amra, Claude, High reflectivity HfO2/SiO2 ultraviolet mirrors, Appl. Optics. 41, issue 16, 32563261 (2002).
10. Wang, L., Fan, B., Wang, Z., Cheng, X. Wu, Y., Efects of substrate temperature on crystallite orientation of HfO2 thin films, Mater. Sci. Poland 27 No. 2 (2009).
11. Khoshmann, J. M., Khan, A., Kordesch, M. E., Surface & Coatings Technology, 202 25002502 (2008).
12. Balog, M. and Schieber, M., Thin Solid Films, 41, 247259 (1977).
13. Villanueva-Ibañez, M., Dujardin, C. and Mugnier, J.. Materials Science and Engineering, B 105, 1215 (2003).
14. Schlegel, HB Geometry optimization.Wiley, New York. doi: 10.1002/wcms.34 (2011).
15. Hohenberg, P, Kohn, W Inhomogeneous electron gas. Phys Rev 136:B864B871 (1964).
16. Parr, RG, Yang, W Density-functional theory of atoms and molecules. Oxford Univ Press 7677 (1989).
17. Giannozzi, P Notes on pseudopotential generation. Scuola Normale Superiore di Pisa (2007).
18. Perdew, JP, Zunger, A Self-interaction correction to density functional approximations for many-electron systems. Phys Rev B, 23 : 5048–79 (1981).
19. Troullier, N, Martíns, JL Efficient pseudo potentials for plane-wave calculations. Phys Rev B 43:19932006 (1991)
20. Giannozzi, P, Baroni, S, Bonini, N, Calandra, M, Car, R, Cavazzoni, C et al. . Quantum espresso: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21:395502–19 (2009).
21. Rapaport, D. C.. The Art of Molecular Dynamics Simulation. Cambridge University Press, 2nd Ed. (2010).
22. Dennington, Roy, Keith, Todd, and Millam, John. GaussView V 5.0.9. Semichem Inc, Shawnee Mission, KS (2009).
23. Parrinello, M, Rahman, A Polymorphic transitions in single crystals. A new molecular dynamics method. J Appl Phys 52:7182 (1981).


Related content

Powered by UNSILO

Structural Characterization and computational approach to doped hafnium oxide nano crystals for thermo and photoluminescence applications

  • R. M. Radamés (a1) (a2), V. Z. Alejandro (a1) and M. Romero (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.