Skip to main content Accessibility help
×
Home

Structural Characteristics and Diffusion Coefficient of Alginate Hydrogels Used for Cell Based Drug Delivery

  • Avid Najdahmadi (a1), Jonathan RT Lakey (a2) and Elliot Botvinick (a1) (a3) (a2)

Abstract

Alginate is a hydrogel polymer commonly used in multiple drug delivery and cellular tissue transplantation applications. Tunability, gel formation, and stabilization properties of this biopolymer contributes to a better controlled and prolonged release of encapsulated drugs as well as the ability to provide immunoisolation to transplanted cells. One commonly used application of this biopolymer is pancreatic islet transplantation, as a promising approach of providing insulin to type 1 diabetics. The encapsulant alginate provides passage to nutrients, glucose and oxygen and allows the insulin to diffuse while blocking immunoglobulins. In this study, a hydrogel encapsulator is designed and used to fabricate spherical alginate microcapsules. These capsules are then incubated in either a calcium chloride solution typical used to polymerize alginate or a physiological media formulated to mimic in vivo conditions. The diffusion of different molecular weight particles tagged with spectrally distinct fluorescent molecules into the microspheres is observed using confocal laser microscopy. We characterize changes in diffusional characteristics of these molecules within alginate spheres as a function of incubation duration. We estimate diffusion coefficients (D) from fluorescence image series and observe a notable increase in capsule permeability once incubated in physiological media. Our strategy can serve as quantitative method to analyze structural changes in hydrogels.

Copyright

Corresponding author

References

Hide All
1Airey, G.D., Construction and Building Materials 16, 473 (2002).
2Ferrer-Argemi, L., Aliabadi, E.S., Cisquella-Serra, A., Salazar, A., Madou, M., and Lee, J., Carbon N. Y. 130, 87 (2018).
3Hao, L., Lawrence, J., and Li, L., Appl. Surf. Sci. 247, 453 (2005).
4Asghari, A., Zarei-Hanzaki, A., and Eskandari, M., Materials Science and Engineering: A 579, 150 (2013).
5Najdahmadi, A., Zarei-Hanzaki, A., and Farghadani, E., International Conference of Metallurgical Engineering Society and Foundry Men’s Society 1622-IMES-CONGR-FULL (2012).
6Eskandari, M., Zarei-Hanzaki, A., Yadegari, M., Soltani, N., and Asghari, A., Opt. Lasers Eng. 54, 79 (2014).
7Augst, A.D., Kong, H.J., and Mooney, D.J., Macromol. Biosci. 6, 623 (2006).
8Mohammadi, M.R., Rezaa Mohammadi, M., Nojoomi, A., Mozafari, M., Dubnika, A., Inayathullah, M., and Rajadas, J., J. Mater. Chem. B Mater. Biol. Med. 5, 3995 (2017).
9Pandey, N., Hakamivala, A., Xu, C., Hariharan, P., Radionov, B., Huang, Z., Liao, J., Tang, L., Zimmern, P., Nguyen, K.T., and Hong, Y., Adv. Healthc. Mater. 7, e1701069 (2018).
10Nojoomi, A., Tamjid, E., Simchi, A., Bonakdar, S., and Stroeve, P., International Journal of Polymeric Materials and Polymeric Biomaterials 66, 105 (2016).
11Najdahmadi, A., Zarei-Hanzaki, A., and Farghadani, E., Mater. Des. 54, 786 (2014).
12Roy, M., Bandyopadhyay, A., and Bose, S., Characterization of Biomaterials: Chapter 7.2. Mechanical Properties of Bioceramic Coatings on Medical Implants (Elsevier Inc. Chapters, 2013).
13Lutolf, M.P. and Hubbell, J.A., Nat. Biotechnol. 23, 47 (2005).
14Moghassemi, S., Hadjizadeh, A., Hakamivala, A., and Omidfar, K., AAPS PharmSciTech 18, 34 (2017).
15Mozafari, M., Kargozar, S., de Santiago, G.T., Rezaa Mohammadi, M., Milan, P.B., Foroutan Koudehi, M., Aghabarari, B., and Nourani, M.R., Materials Technology 33, 29 (2017).
16Beris, A.E., Lykissas, M.G., Papageorgiou, C.D., and Georgoulis, A.D., Injury 36, S14 (2005).
17Najdahmadi, A., Lakey, J., and Botvinick, E., in Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XV. International Society for Optics and Photonics. Volume 10506, p.105061D (2018).
18Tønnesen, H.H. and Karlsen, J., Drug Dev. Ind. Pharm. 28, 621 (2002).
19Moghassemi, S., Parnian, E., Hakamivala, A., Darzianiazizi, M., Vardanjani, M.M., Kashanian, S., Larijani, B., and Omidfar, K., Mater. Sci. Eng. C Mater. Biol. Appl. 46, 333 (2015).
20Kuo, C.K. and Ma, P.X., Biomaterials 22, 511 (2001).
21Mørch, Y.A., Donati, I., Strand, B.L., and Skjåk-Braek, G., Biomacromolecules 7, 1471 (2006).
22Okay, O., in Springer Series on Chemical Sensors and Biosensors (2009), pp. 114.
23Mazué, G., Newman, A.J., Scampini, G., Della Torre, P., Hard, G.C., Iatropoulos, M.J., Williams, G.M., and Bagnasco, S.M., Toxicol. Pathol. 21, 490 (1993).
24Bouhadir, K.H., Alsberg, E., and Mooney, D.J., Biomaterials 22, 2625 (2001).
25Peters, M.C., Isenberg, B.C., Rowley, J.A., and Mooney, D.J., J. Biomater. Sci. Polym. Ed. 9, 1267 (1998).
26Whalen, G.F., Shing, Y., and Folkman, J., Growth Factors 1, 157 (1989).
27Zimmermann, H., Shirley, S.G., and Zimmermann, U., Curr. Diab. Rep. 7, 314 (2007).
28Grimmer, J.F., Fredrik Grimmer, J., Gunnlaugsson, C.B., Alsberg, E., Murphy, H.S., Kong, H.J., Mooney, D.J., and Weatherly, R.A., Archives of Otolaryngology–Head & Neck Surgery 130, 1191 (2004).
29Calafiore, R., Expert Opin. Biol. Ther. 3, 201 (2003).
30Yoon, J.-W. and Jun, H.-S., Am. J. Ther. 12, 580 (2005).
31de Vos, P, Faas, M.M., Strand, B., and Calafiore, R., Biomaterials 27, 5603 (2006).
32Kummerfeld, G., Krishnan, R., Najdahmadi, A., Botvinick, E., and Lakey, JRT., in Royan International Twin Congress 11th Congress on Stem Cell Biology and Technology, pp. 1920 Volume 17, Supplement 1. (2015)
33Goosen, M.F., O’Shea, G.M., Gharapetian, H.M., Chou, S., and Sun, A.M., Biotechnol. Bioeng. 27, 146 (1985).
34Weidling, J., Sameni, S., Lakey, J.R.T., and Botvinick, E., J. Biomed. Opt. 19, 087006 (2014).
35Yazdi, H.S., O’Sullivan, T.D., Leproux, A., Hill, B., Durkin, A., Telep, S., Lam, J., Yazdi, S.S., Police, A.M., Carroll, R.M., Combs, F.J., Strömberg, T., Yodh, A.G., and Tromberg, B.J., J. Biomed. Opt. 22, 045003 (2017).
36Torabzadeh, M., Park, I.-Y., Bartels, R.A., Durkin, A.J., and Tromberg, B.J., J. Biomed. Opt. 22, 30501 (2017).
37Najdahmadi, A., Gurlin, RE., Weidling, J., White, S., Shergill, B., Lakey, JRT., and Botvinick, E., Proc. SPIE Volume 10488, P. 1048847 (2018).
38Crank, J., The Mathematics of Diffusion (Oxford University Press, 1979).
39Goosen, M.F., O’Shea, G.M., Gharapetian, H.M., Chou, S., and Sun, A.M., Biotechnol. Bioeng. 27, 146 (1985).
40de Vos, P, Hoogmoed, C.G., and Busscher, H.J., J. Biomed. Mater. Res. 60, 252 (2002).
41DiBartola, S.P., Fluid, Electrolyte, and Acid-Base Disorders in Small Animal Practice (Elsevier Health Sciences, 2011).

Keywords

Related content

Powered by UNSILO

Structural Characteristics and Diffusion Coefficient of Alginate Hydrogels Used for Cell Based Drug Delivery

  • Avid Najdahmadi (a1), Jonathan RT Lakey (a2) and Elliot Botvinick (a1) (a3) (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.