Skip to main content Accessibility help
×
Home

STM Tip-Induced Switching in Molybdenum Disulfide-Based Atomristors

  • Jesse E. Thompson (a1), Brandon T. Blue (a1), Darian Smalley (a1), Fernand Torres-Davila (a1), Laurene Tetard (a1), Jeremy T. Robinson (a2) and Masahiro Ishigami (a1)...

Abstract

Scanning tunneling microscopy and spectroscopy (STM/STS) are used to electronically switch atomically-thin memristors, referred to as “atomristors”, based on a graphene/molybdenum disulfide (MoS2)/Au heterostructure. A gold-assisted exfoliation method was used to produce near-millimeter (mm) scale MoS2 on Au thin-film substrates, followed by transfer of a separately exfoliated graphene top layer. Our results reveal that it is possible to switch the conductivity of a graphene/MoS2/Au memristor stack using an STM tip. These results provide a path to further studies of atomically-thin memristors fabricated from heterostructures of two-dimensional materials such as graphene and transition metal dichalcogenides (TMDs).

Copyright

Corresponding author

References

Hide All
[1]Yu, S.: Neuro-inspired computing with emerging nonvolatile memorys. Proceedings of the IEEE 106, 260 (2018).
[2]Herculano-Houzel, S.: The human brain in numbers: a linearly scaled-up primate brain. Frontiers in human neuroscience 3, 31 (2009).
[3]Burr, G.W., Shelby, R.M., Sebastian, A., Kim, S., Kim, S., Sidler, S., Virwani, K., Ishii, M., Narayanan, P., Fumarola, A., Sanches, L.L., Boybat, I., Le Gallo, M., Moon, K., Woo, J., Hwang, H. and Leblebici, Y.: Neuromorphic computing using non-volatile memory. Advances in Physics: X 2, 89 (2017).
[4]Kalita, H., Krishnaprasad, A., Choudhary, N., Das, S., Chung, H., Jung, Y. and Roy, T.: Artificial Neuron using MoS2/Graphene Threshold Switching Memristors, in 2018 76th Device Research Conference (DRC) (2018), pp. 1.
[5]Kalita, H., Krishnaprasad, A., Choudhary, N., Das, S., Dev, D., Ding, Y., Tetard, L., Chung, H.-S., Jung, Y. and Roy, T.: Artificial Neuron using Vertical MoS2/Graphene Threshold Switching Memristors. Scientific Reports 9, 53 (2019).
[6]Ge, R.J., Wu, X.H., Kim, M., Shi, J.P., Sonde, S., Tao, L., Zhang, Y.F., Lee, J.C. and Akinwande, D.: Atomristor: Nonvolatile Resistance Switching in Atomic Sheets of Transition Metal Dichalcogenides. Nano Letters 18, 434 (2018).
[7]Yan, X., Zhao, Q., Chen, A.P., Zhao, J., Zhou, Z., Wang, J., Wang, H., Zhang, L., Li, X., Xiao, Z., Wang, K., Qin, C., Wang, G., Pei, Y., Li, H., Ren, D., Chen, J. and Liu, Q.: Vacancy‐Induced Synaptic Behavior in 2D WS 2 Nanosheet–Based Memristor for Low‐Power Neuromorphic Computing. Small, 1901423 (2019).
[8]Kim, K.M., Zhang, J., Graves, C., Yang, J.J., Choi, B.J., Hwang, C.S., Li, Z. and Williams, R.S.: Low-Power, Self-Rectifying, and Forming-Free Memristor with an Asymmetric Programing Voltage for a High-Density Crossbar Application. Nano Letters 16, 6724 (2016).
[9]Chen, Q., Lin, M., Wang, Z., Zhao, X., Cai, Y., Liu, Q., Fang, Y., Yang, Y., He, M. and Huang, R.: Low Power Parylene-Based Memristors with a Graphene Barrier Layer for Flexible Electronics Applications. Advanced Electronic Materials 0, 1800852.
[10]Hwang, C.S.: Prospective of Semiconductor Memory Devices: from Memory System to Materials. Advanced Electronic Materials 1, 1400056 (2015).
[11]Sarwar, S.S., Saqueb, S.A.N., Quaiyum, F. and Rashid, A.B.M.H.: Memristor-Based Nonvolatile Random Access Memory: Hybrid Architecture for Low Power Compact Memory Design. IEEE Access 1, 29 (2013).
[12]Velicky, M., Donnelly, G.E., Hendren, W.R., McFarland, S., Scullion, D., DeBenedetti, W.J.I., Correa, G.C., Han, Y., Wain, A.J., Hines, M.A., Muller, D.A., Novoselov, K.S., Abruna, H.D., Bowman, R.M., Santos, E.J.G. and Huang, F.: Mechanism of Gold-Assisted Exfoliation of Centimeter-Sized Transition-Metal Dichalcogenide Monolayers. ACS Nano 12, 10463 (2018).
[13]Desai, S.B., Madhvapathy, S.R., Amani, M., Kiriya, D., Hettick, M., Tosun, M., Zhou, Y., Dubey, M., Ager, J.W. 3rd, Chrzan, D. and Javey, A.: Gold-Mediated Exfoliation of Ultralarge Optoelectronically-Perfect Monolayers. Adv Mater 28, 4053 (2016).
[14]Dean, C.R., Young, A.F., Meric, I., Lee, C., Wang, L., Sorgenfrei, S., Watanabe, K., Taniguchi, T., Kim, P., Shepard, K.L. and Hone, J.: Boron nitride substrates for high-quality graphene electronics. Nature Nanotechnology 5, 722 (2010).
[15]Tien, D.H., Park, J.-Y., Kim, K.B., Lee, N., Choi, T., Kim, P., Taniguchi, T., Watanabe, K. and Seo, Y.: Study of Graphene-based 2D-Heterostructure Device Fabricated by All-Dry Transfer Process. ACS Applied Materials & Interfaces 8, 3072 (2016).
[16]Ishigami, M., Chen, J.H., Cullen, W.G., Fuhrer, M.S. and Williams, E.D.: Atomic Structure of Graphene on SiO2. Nano Letters 7, 1643 (2007).
[17]Chen, W., Madhavan, V., Jamneala, T. and Crommie, M.F.: Scanning Tunneling Microscopy Observation of an Electronic Superlattice at the Surface of Clean Gold. Physical Review Letters 80, 1469 (1998).
[18]Ernst, S., Wirth, S., Rams, M., Dolocan, V. and Steglich, F.: Tip preparation for usage in an ultra-low temperature UHV scanning tunneling microscope. Science and Technology of Advanced Materials 8, 347 (2007).
[19]Lee, C., Yan, H., Brus, L.E., Heinz, T.F., Hone, J. and Ryu, S.: Anomalous Lattice Vibrations of Single- and Few-Layer MoS2. ACS Nano 4, 2695 (2010).
[20]Ferrari, A.C.: Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Communications 143, 47 (2007).
[21]Di Felice, D., Abad, E., González, C., Smogunov, A. and Dappe, Y.J.: Angle dependence of the local electronic properties of the graphene/MoS2interface determined byab initiocalculations. Journal of Physics D: Applied Physics 50 (2017).
[22]Chen, Y., Huang, S., Ji, X., Adepalli, K., Yin, K., Ling, X., Wang, X., Xue, J., Dresselhaus, M., Kong, J. and Yildiz, B.: Tuning Electronic Structure of Single Layer MoS2 through Defect and Interface Engineering. ACS Nano 12, 2569 (2018).
[23]Miwa, J.A., Dendzik, M., Grønborg, S.S., Bianchi, M., Lauritsen, J.V., Hofmann, P. and Ulstrup, S.: Van der Waals Epitaxy of Two-Dimensional MoS2–Graphene Heterostructures in Ultrahigh Vacuum. ACS Nano 9, 6502 (2015).
[24]Zhang, C., Johnson, A., Hsu, C.-L., Li, L.-J. and Shih, C.-K.: Direct Imaging of Band Profile in Single Layer MoS2 on Graphite: Quasiparticle Energy Gap, Metallic Edge States, and Edge Band Bending. Nano Letters 14, 2443 (2014).
[25]Fang, J., Vandenberghe, W.G. and Fischetti, M.V.: Microscopic dielectric permittivities of graphene nanoribbons and graphene. Physical Review B 94, 045318 (2016).
[26]Santos, E.J.G. and Kaxiras, E.: Electrically Driven Tuning of the Dielectric Constant in MoS2 Layers. ACS Nano 7, 10741 (2013).
[27]Kumar, K., Kim, Y.-S. and Yang, E.-H.: The influence of thermal annealing to remove polymeric residue on the electronic doping and morphological characteristics of graphene. Carbon 65, 35 (2013).
[28]Kukucska, G. and Koltai, J.: Theoretical Investigation of Strain and Doping on the Raman Spectra of Monolayer MoS 2, (2017).

Keywords

STM Tip-Induced Switching in Molybdenum Disulfide-Based Atomristors

  • Jesse E. Thompson (a1), Brandon T. Blue (a1), Darian Smalley (a1), Fernand Torres-Davila (a1), Laurene Tetard (a1), Jeremy T. Robinson (a2) and Masahiro Ishigami (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed