Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-30T08:04:12.943Z Has data issue: false hasContentIssue false

Solvent Interface Trapping as an Effective Technique to Fabricate Graphite-Nanomaterial Composite Thin Films

Published online by Cambridge University Press:  26 December 2017

Medini Padmanabhan*
Affiliation:
Department of Physical Sciences, Rhode Island College, Providence, RI-02908, U.S.A.
Rachel Meyen
Affiliation:
Department of Physical Sciences, Rhode Island College, Providence, RI-02908, U.S.A.
Kerri Houghton
Affiliation:
Department of Physical Sciences, Rhode Island College, Providence, RI-02908, U.S.A.
Miles St. John
Affiliation:
Department of Physical Sciences, Rhode Island College, Providence, RI-02908, U.S.A.
Get access

Abstract

Natural graphite can be exfoliated into thin films by trapping it at the interface between water and heptane [S. J Woltornist, A. J. Oyer, J-M. Y. Carrillo, A.V. Dobrynin, and D.H. Adamson, ACS Nano 7, 7062 (2013)]. In this work, we add functional elements into these graphitic thin films by introducing additives into the water phase prior to exfoliation. We report the successful incorporation of ZnO nanoparticles thereby enabling the composite films to act as effective ultraviolet photodetectors. In a similar manner, integration of silver nanowires is achieved, which results in an enhancement of the electrical conductivity of graphite.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Woltornist, S. J., Oyer, A. J., Carrillo, J-M. Y, Dobrynin, A.V., and Adamson, D.H., ACS Nano 7, 7062 (2013).CrossRefGoogle Scholar
Ferrari, A. C., Bonaccorso, F., Fal’ko, V., Novoselov, K. S., Roche, S., Bøggild, P., Borini, S., Koppens, F. H. L., Palermo, V., Pugno, N., Garrido, J. A., Sordan, R., Bianco, A., Ballerini, L., Prato, M., Lidorikis, E., Kivioja, J., Marinelli, C., Ryhänen, T., Morpurgo, A., Coleman, J. N., Nicolosi, V., Colombo, L., Fert, A., Garcia-Hernandez, M., Bachtold, A., Schneider, G. F., Guinea, F., Dekker, C., Barbone, M., Sun, Z., Galiotis, C., Grigorenko, A. N., Konstantatos, G., Kis, A., Katsnelson, M., Vandersypen, L., Loiseau, A., Morandi, V., Neumaier, D., Treossi, E., Pellegrini, V., Polini, M., Tredicucci, A., Williams, G. M., Hong, B. H., J -H Ahn, , Kim, J. M., Zirath, H., van Wees, B. J., van der Zant, H., Occhipinti, L., Di Matteo, A., Kinloch, I. A., Seyller, T., Quesnel, E., Feng, X., Teo, K., Rupesinghe, N., Hakonen, P., Neil, S. R. T., Tannock, Q., Löfwander, T. and Kinaret, J., Nanoscale 7, 4598 (2015).CrossRefGoogle Scholar
Gong, X., Liu, G., Li, Y., Yu, D. Y. W., and Teoh, W. Y., Chem. Mater.28, 8082 (2016).CrossRefGoogle Scholar
Son, D. I., Yang, H. Y., Kim, T. W., and Il Park, W., App. Phys. Lett. 102, 021105 (2013)CrossRefGoogle Scholar
Guo, W., Xu, S., Wu, Z., Wang, N., Loy, M. M. T., and Du, S., Small 9, 3031 (2013)CrossRefGoogle ScholarPubMed
Shao, D., Yu, M., Sun, H., Hu, T., lian, J. and Sawyer, S., Nanoscale 5,3664 (2013)CrossRefGoogle Scholar
Safa, S., Sarraf-Mamoory, R. and Azimirad, R., J Sol-Gel Sci Technol 74, 499 (2015)CrossRefGoogle Scholar
Lee, D., Lee, H., Ahn, Y., Jeong, Y., Lee, D -Y and Lee, Y., Nanoscale 5, 7750 (2013)CrossRefGoogle ScholarPubMed
Chen, R., Das, S. R., Jeong, C., Khan, M. R., Janes, D. B. and Alam, M.A., Adv Funct Mater 23, 5150 (2013)CrossRefGoogle Scholar
Reed, J. C., Zhu, H., Zhu, A. Y., Li, C., and Cubukcu, E., Nano Lett. 12, 4090 (2012)CrossRefGoogle Scholar