Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-28T20:59:39.978Z Has data issue: false hasContentIssue false

Solar-Blind Ultraviolet Photodetectors Based on Vertical Graphene-Hexagonal Boron Nitride Heterostructures

Published online by Cambridge University Press:  20 August 2020

Jesse E. Thompson
Affiliation:
Department of Physics and Nanoscience Technology Center, University of Central Florida, Orlando, FL32826, U.S.A.
Darian Smalley
Affiliation:
Department of Physics and Nanoscience Technology Center, University of Central Florida, Orlando, FL32826, U.S.A.
Masahiro Ishigami
Affiliation:
Department of Physics and Nanoscience Technology Center, University of Central Florida, Orlando, FL32826, U.S.A.
Get access

Abstract

Photodetectors operating in the ultraviolet (UV) play a pivotal role in applications such as ozone monitoring and biosensing. One key factor to successfully implementing such photodetectors is that they must be solar-blind to avoid detecting ambient visible and infrared light. Unfortunately, UV photodetectors based on silicon and other typical semiconductors are not natively solar-blind, since their band gap energies are in the visible range. Hexagonal boron nitride (h-BN) is an example of a wide band gap semiconductor which shows promise for use as the absorbing medium in a UV photodetector device, since its band gap is wide enough to make it inherently insensitive to light in the visible range and above. Here we report on the fabrication and characterization of a graphene-h-BN-heterostructure photodetector which utilizes a vertical geometry, in principle allowing for highly scalable production. We find that our device shows a finite photoresponse to illumination by a 254 nm light source, but not to a 365 nm source, thus suggesting that our device is solar-blind.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Thuillier, G., Hersé, M., Labs, D., Foujols, T., Peetermans, W., Gillotay, D., Simon, P.C. and Mandel, H.: The Solar Spectral Irradiance from 200 to 2400 nm as Measured by the SOLSPEC Spectrometer from the Atlas and Eureca Missions. Solar Physics 214, 1 (2003).CrossRefGoogle Scholar
Matsumi, Y. and Kawasaki, M.: Photolysis of Atmospheric Ozone in the Ultraviolet Region. Chemical Reviews 103, 4767 (2003).CrossRefGoogle ScholarPubMed
Proffitt, M.H. and McLaughlin, R.J.: Fast-response dual-beam UV-absorption ozone photometer suitable for use on stratospheric balloons. Review of Scientific Instruments 54, 1719 (1983).CrossRefGoogle Scholar
Andersen, P.C., Williford, C.J. and Birks, J.W.: Miniature Personal Ozone Monitor Based on UV Absorbance. Anal Chem 82, 7924 (2010).CrossRefGoogle ScholarPubMed
Williams, E.J., Fehsenfeld, F.C., Jobson, B.T., Kuster, W.C., Goldan, P.D., Stutz, J. and McClenny, W.A.: Comparison of Ultraviolet Absorbance, Chemiluminescence, and DOAS Instruments for Ambient Ozone Monitoring. Environmental Science & Technology 40, 5755 (2006).CrossRefGoogle ScholarPubMed
Chen, X., Ren, F., Gu, S. and Ye, J.: Review of gallium-oxide-based solar-blind ultraviolet photodetectors. Photonics Research 7 (2019).CrossRefGoogle Scholar
Guo, X.C., Hao, N.H., Guo, D.Y., Wu, Z.P., An, Y.H., Chu, X.L., Li, L.H., Li, P.G., Lei, M. and Tang, W.H.: β-Ga2O3/p-Si heterojunction solar-blind ultraviolet photodetector with enhanced photoelectric responsivity. Journal of Alloys and Compounds 660, 136 (2016).CrossRefGoogle Scholar
Chen, X., Liu, K., Zhang, Z., Wang, C., Li, B., Zhao, H., Zhao, D. and Shen, D.: Self-Powered Solar-Blind Photodetector with Fast Response Based on Au/β-Ga2O3 Nanowires Array Film Schottky Junction. ACS Applied Materials & Interfaces 8, 4185 (2016).Google ScholarPubMed
Guo, D., Liu, H., Li, P., Wu, Z., Wang, S., Cui, C., Li, C. and Tang, W.: Zero-Power-Consumption Solar-Blind Photodetector Based on β-Ga2O3/NSTO Heterojunction. ACS Applied Materials & Interfaces 9, 1619 (2017).CrossRefGoogle ScholarPubMed
Chen, H., Yu, P., Zhang, Z., Teng, F., Zheng, L., Hu, K. and Fang, X.: Ultrasensitive Self-Powered Solar-Blind Deep-Ultraviolet Photodetector Based on All-Solid-State Polyaniline/MgZnO Bilayer. Small 12, 5809 (2016).CrossRefGoogle ScholarPubMed
Zhao, B., Wang, F., Chen, H., Zheng, L., Su, L., Zhao, D. and Fang, X.: An Ultrahigh Responsivity (9.7 mA W−1) Self-Powered Solar-Blind Photodetector Based on Individual ZnO–Ga2O3 Heterostructures. Advanced Functional Materials 27, 1700264 (2017).CrossRefGoogle Scholar
Han, W., Li, C., Yang, S., Luo, P., Wang, F., Feng, X., Liu, K., Pei, K., Li, Y., Li, H., Li, L., Gao, Y. and Zhai, T.: Atomically Thin Oxyhalide Solar-Blind Photodetectors. Small n/a, 2000228 (2020).Google Scholar
Liu, H., Meng, J., Zhang, X., Chen, Y., Yin, Z., Wang, D., Wang, Y., You, J., Gao, M. and Jin, P.: High-performance deep ultraviolet photodetectors based on few-layer hexagonal boron nitride. Nanoscale 10, 5559 (2018).CrossRefGoogle ScholarPubMed
Rivera, M., Velázquez, R., Aldalbahi, A., Zhou, A.F. and Feng, P.X.: UV photodetector based on energy bandgap shifted hexagonal boron nitride nanosheets for high-temperature environments. Journal of Physics D: Applied Physics 51, 045102 (2018).CrossRefGoogle Scholar
Shiue, R.-J., Gao, Y., Wang, Y., Peng, C., Robertson, A.D., Efetov, D.K., Assefa, S., Koppens, F.H.L., Hone, J. and Englund, D.: High-Responsivity Graphene–Boron Nitride Photodetector and Autocorrelator in a Silicon Photonic Integrated Circuit. Nano Letters 15, 7288 (2015).CrossRefGoogle Scholar
Zunger, A., Katzir, A. and Halperin, A.: Optical properties of hexagonal boron nitride. Physical Review B 13, 5560 (1976).CrossRefGoogle Scholar
Watanabe, K., Taniguchi, T. and Kanda, H.: Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nature Materials 3, 404 (2004).CrossRefGoogle ScholarPubMed
Cassabois, G., Valvin, P. and Gil, B.: Hexagonal boron nitride is an indirect bandgap semiconductor. Nature Photonics 10, 262 (2016).CrossRefGoogle Scholar
Song, L., Ci, L., Lu, H., Sorokin, P.B., Jin, C., Ni, J., Kvashnin, A.G., Kvashnin, D.G., Lou, J., Yakobson, B.I. and Ajayan, P.M.: Large Scale Growth and Characterization of Atomic Hexagonal Boron Nitride Layers. Nano Letters 10, 3209 (2010).CrossRefGoogle ScholarPubMed
Li, L.H., Cervenka, J., Watanabe, K., Taniguchi, T. and Chen, Y.: Strong Oxidation Resistance of Atomically Thin Boron Nitride Nanosheets. ACS Nano 8, 1457 (2014).CrossRefGoogle ScholarPubMed
Husain, E., Narayanan, T.N., Taha-Tijerina, J.J., Vinod, S., Vajtai, R. and Ajayan, P.M.: Marine Corrosion Protective Coatings of Hexagonal Boron Nitride Thin Films on Stainless Steel. ACS Applied Materials & Interfaces 5, 4129 (2013).CrossRefGoogle ScholarPubMed
Li, L.H., Xing, T., Chen, Y. and Jones, R.: Boron Nitride Nanosheets for Metal Protection. Advanced Materials Interfaces 1, 1300132 (2014).CrossRefGoogle Scholar
Jo, I., Pettes, M.T., Kim, J., Watanabe, K., Taniguchi, T., Yao, Z. and Shi, L.: Thermal Conductivity and Phonon Transport in Suspended Few-Layer Hexagonal Boron Nitride. Nano Letters 13, 550 (2013).CrossRefGoogle ScholarPubMed
Alam, M.T., Bresnehan, M.S., Robinson, J.A. and Haque, M.A.: Thermal conductivity of ultra-thin chemical vapor deposited hexagonal boron nitride films. Applied Physics Letters 104 (2014).CrossRefGoogle Scholar
Mahvash, F., Eissa, S., Bordjiba, T., Tavares, A.C., Szkopek, T. and Siaj, M.: Corrosion resistance of monolayer hexagonal boron nitride on copper. Scientific Reports 7, 42139 (2017).CrossRefGoogle ScholarPubMed
Hattori, Y., Taniguchi, T., Watanabe, K. and Nagashio, K.: Layer-by-Layer Dielectric Breakdown of Hexagonal Boron Nitride. ACS Nano 9, 916 (2015).Google ScholarPubMed
Ji, Y., Pan, C., Zhang, M., Long, S., Lian, X., Miao, F., Hui, F., Shi, Y., Larcher, L., Wu, E. and Lanza, M.: Boron nitride as two dimensional dielectric: Reliability and dielectric breakdown. Applied Physics Letters 108, 012905 (2016).CrossRefGoogle Scholar
Jang, S.K., Youn, J., Song, Y.J. and Lee, S.: Synthesis and Characterization of Hexagonal Boron Nitride as a Gate Dielectric. 6, 30449 (2016).Google Scholar
McPherson, J.W., Jinyoung, K., Shanware, A., Mogul, H. and Rodriguez, J.: Trends in the ultimate breakdown strength of high dielectric-constant materials. IEEE Transactions on Electron Devices 50, 1771 (2003).CrossRefGoogle Scholar
Alem, N., Erni, R., Kisielowski, C., Rossell, M.D., Gannett, W. and Zettl, A.: Atomically thin hexagonal boron nitride probed by ultrahigh-resolution transmission electron microscopy. Physical Review B 80, 155425 (2009).CrossRefGoogle Scholar
Dean, C.R., Young, A.F., Meric, I., Lee, C., Wang, L., Sorgenfrei, S., Watanabe, K., Taniguchi, T., Kim, P., Shepard, K.L. and Hone, J.: Boron nitride substrates for high-quality graphene electronics. Nature Nanotechnology 5, 722 (2010).CrossRefGoogle ScholarPubMed
Kim, K.K., Hsu, A., Jia, X., Kim, S.M., Shi, Y., Hofmann, M., Nezich, D., Rodriguez-Nieva, J.F., Dresselhaus, M., Palacios, T. and Kong, J.: Synthesis of Monolayer Hexagonal Boron Nitride on Cu Foil Using Chemical Vapor Deposition. Nano Letters 12, 161 (2012).CrossRefGoogle ScholarPubMed
Wu, X., Ge, R., Chen, P.-A., Chou, H., Zhang, Z., Zhang, Y., Banerjee, S., Chiang, M.-H., Lee, J.C. and Akinwande, D.: Thinnest Nonvolatile Memory Based on Monolayer h-BN. Advanced Materials 31, 1806790 (2019).CrossRefGoogle ScholarPubMed
Li, W., Cheng, G., Liang, Y., Tian, B., Liang, X., Peng, L., Hight Walker, A.R., Gundlach, D.J. and Nguyen, N.V.: Broadband optical properties of graphene by spectroscopic ellipsometry. Carbon 99, 348 (2016).CrossRefGoogle Scholar
Thompson, J.E., Blue, B.T., Smalley, D., Torres-Davila, F., Tetard, L., Robinson, J.T. and Ishigami, M.: STM Tip-Induced Switching in Molybdenum Disulfide-Based Atomristors. MRS Advances 4, 2609 (2019).CrossRefGoogle Scholar
Tauc, J., Grigorovici, R. and Vancu, A.: Optical Properties and Electronic Structure of Amorphous Germanium. physica status solidi (b) 15, 627 (1966).Google Scholar
Elias, C., Valvin, P., Pelini, T., Summerfield, A., Mellor, C.J., Cheng, T.S., Eaves, L., Foxon, C.T., Beton, P.H., Novikov, S.V., Gil, B. and Cassabois, G.: Direct band-gap crossover in epitaxial monolayer boron nitride. Nature Communications 10, 2639 (2019).CrossRefGoogle ScholarPubMed
Stehle, Y., Meyer, H.M., Unocic, R.R., Kidder, M., Polizos, G., Datskos, P.G., Jackson, R., Smirnov, S.N. and Vlassiouk, I.V.: Synthesis of Hexagonal Boron Nitride Monolayer: Control of Nucleation and Crystal Morphology. Chemistry of Materials 27, 8041 (2015).CrossRefGoogle Scholar
Wang, H., Zhang, X., Liu, H., Yin, Z., Meng, J., Xia, J., Meng, X.-M., Wu, J. and You, J.: Synthesis of Large-Sized Single-Crystal Hexagonal Boron Nitride Domains on Nickel Foils by Ion Beam Sputtering Deposition. Advanced Materials 27, 8109 (2015).CrossRefGoogle ScholarPubMed
Gabor, N.M., Song, J.C.W., Ma, Q., Nair, N.L., Taychatanapat, T., Watanabe, K., Taniguchi, T., Levitov, L.S. and Jarillo-Herrero, P.: Hot Carrier–Assisted Intrinsic Photoresponse in Graphene. Science 334, 648 (2011).CrossRefGoogle ScholarPubMed
Song, J.C.W., Rudner, M.S., Marcus, C.M. and Levitov, L.S.: Hot Carrier Transport and Photocurrent Response in Graphene. Nano Letters 11, 4688 (2011).CrossRefGoogle ScholarPubMed