Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-25T22:54:42.615Z Has data issue: false hasContentIssue false

Room-Temperature Wafer Bonded Multi-Junction Solar Cell Grown by Solid State Molecular Beam Epitaxy

Published online by Cambridge University Press:  08 June 2016

Shulong Lu*
Affiliation:
Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, P. R. China
Shiro Uchida
Affiliation:
Chiba Institute of Technology, Narashino, Chiba 275-0016, Japan
Get access

Abstract

We studied the InGaP/GaAs//InGaAsP/InGaAs four-junction solar cells grown by molecular beam epitaxy (MBE), which were fabricated by the novel wafer bonding. In order to reach a higher conversion efficiency at highly concentrated illumination, heat generation should be minimized. We have improved the device structure to reduce the thermal and electrical resistances. Especially, the bond resistance was reduced to be the lowest value of 2.5 × 10-5 Ohm cm2 ever reported for a GaAs/InP wafer bond, which was obtained by the specific combination of p+-GaAs/n-InP bonding and by using room-temperature wafer bonding. Furthermore, in order to increase the short circuit current density (Jsc) of 4-junction solar cell, we have developed the quality of InGaAsP material by increasing the growth temperature from 490 °C to 510 °C, which leads to a current matching. In a result, an efficiency of 42 % at 230 suns of the four-junction solar cell fabricated by room-temperature wafer bonding was achieved.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

King, R. R., Law, D. C., Edmondson, K. M., Fetzer, C. M., Kinsey, G. S., Yoon, H., Sherif, R. A., and Karam, N. H., Appl. Phys. Lett. 90, 183516 (2007)CrossRefGoogle Scholar
Geisz, J. F., Friedman, D. J., Ward, J. S., Duda, A., Olavarria, W. J., Moriarty, T. E., Kiehl, J. T., Romero, M. J., Norman, A. G., and Jones, K. M., Appl. Phys. Lett. 93, 123505 (2008).CrossRefGoogle Scholar
Chiu, P. T., Law, D. C., Woo, R. L., Singer, S. B., Bhusari, D., Hong, W. D., Zakaria, A., Boisvert, J., Mesropian, S., King, R. R., and Karam, N. H., IEEE J. Photovoltaics. 4, 493 (2014).CrossRefGoogle Scholar
Stan, M., Aiken, D., Cho, B., Cornfeld, A., Ley, V., Patel, P., Sharps, P., Varghese, T., J. Crystal Growth. 312, 13705 (2010).CrossRefGoogle Scholar
Dimroth, F., Grave, M., Beutel, P., Fiedeler, U., Karcher, C., Tibbits, T. N., and Schwarzburg, K., Prog. Photovoltaics. 22, 277 (2014).CrossRefGoogle Scholar
Uchida, S., Watanabe, T., Yoshida, H., Tange, T., Arimochi, M., Ikeda, M., Dai, P., He, W., Ji, L., Lu, S. L., and Yang, H., Appl. Phys. Express. 7, 112301(2014).CrossRefGoogle Scholar
Arimochi, M., Watanabe, T., Yoshida, H., Tange, T., Nomachi, I., Ikeda, M., Dai, P., He, W., Ji, L., Lu, S. L., Yang, H., and Uchida, S., Jpn. J. Appl. Phys. 54, 056601 (2015).CrossRefGoogle Scholar
Dai, P., Lu, S., Uchida, S., Ji, L., Wu, Y., Tan, M., Bian, L., and Yang, H., Applied Physics Express. 9, 016501 (2016)Google Scholar
Nakayama, K., Tanabe, K., and Atwater, H. A., J. Appl. Phys. 103, 094503(2008).CrossRefGoogle Scholar
Essig, S. and Dimroth, F., ECS J. Solid State Sci. Technol. 2, Q178 (2013).CrossRefGoogle Scholar
Friedman, D. J., Kurtz, S. R., Bertness, K. A., Kibbler, A. E., Kramer, C., Olson, J. M., King, D. L., Hansen, B. R., and Snyder, J. K., Proc. IEEE 24 th Photovoltaic Specialists Conf.1829(1994).Google Scholar
Green, M. A., Emery, K., Hishikawa, Y., Warta, W., and Dunlop, E. D., Prog. Photovoltaics. 23, 1 (2015).CrossRefGoogle Scholar