Skip to main content Accessibility help
×
Home

Room-Temperature Switching Behavior in CNT/Hexadecane Composites

  • Yulong Wu (a1), Peng Meng (a1), Quan Zhang (a1), Zhiyuan Tan (a1), Guoan Cheng (a1) (a2), Xiaoling Wu (a1) (a2) and Ruiting Zheng (a1) (a2)...

Abstract

The room-temperature switching effect is of great interest for many applications, such as smart buildings, sensors, thermal energy storage and automatic temperature control. In this paper, we report a room-temperature switchable carbon nanotube (CNT)/hexadecane composites. Electrical conductivity, thermal conductivity and permittivity of the CNT/hexadecane composites can be regulated around 18°C and the maximal switching ratio reaches 5 orders of magnitude, 3 times and 106.4, respectively. The switching behavior of composites is caused by rearrangement of the carbon nanotube fillers in hexadecane matrix during liquid-solid phase transition. It is found that surface modification is necessary to improve dispersion stability. Effects of filler properties on switching behaviour are also discussed.

Copyright

Corresponding author

References

Hide All
1.Wenger, O. S., Chem. Rev. 113(5), 36863733 (2013).
2.Huang, W. M., Ding, Z., Wang, C. C., Wei, J., Zhao, Y. and Purnawali, H., Mater. Today 13(7-8), 5461 (2010).
3.Imada, M., Fujimori, A. and Tokura, Y., Rev. Mod. Phys. 70(4), 1039–263 (1998).
4.Wu, C., Wei, H., Ning, B. and Xie, Y., Adv. Mater. 22(17), 1972–6 (2010).
5.Adler, D., Rev. Mod. Phys. 40, 714–36 (1968).
6.Szot, K., Speier, W., Bihlmayer, G. and Waser, R., Nat. Mater. 5(4), 312–20 (2006).
7.Meyer, J., Polym. Eng. Sci. 14(10), 706–16 (1974).
8.Manuela, H.B. and Françoise, E.D., Carbon 39(3), 375–82 (2001).
9.Zheng, R., Gao, J., Wang, J. and Chen, G., Nat. Commun 2, 289 (2011).
10.Sun, P., Wu, Y., Gao, J., Cheng, G. and Chen, G., Adv. Mater. 25(35), 4938–43 (2013).
11.Meng, P., Zhang, Q., Wu, Y., Tan, Z., Cheng, G., Wu, X. and Zheng, R., Adv. Funct. Mater 27(30), 1701136 (2017).
12.Schiffres, S.N., Harish, S., Maruyama, S., Shiomi, J. and Malen, J.A., ACS Nano 7(12), 11183–9 (2013).
13.Angayarkanni, S.A. and Philip, J., J. Phys. Chem. C 118(25), 1397213980 (2014).
14.Angayarkanni, S.A. and Philip, J., J. Appl. Phys. 118(9), 094306 (2015).
15.Stauffer, D. and Aharony, A., Introduction to percolation theory. (CRC press, 1994).
16.Prasher, R., Phelan, P.E. and Bhattacharya, P., Nano. Lett 6(7), 1529–34 (2006).
17.Peters, J.E., Papavassiliou, D.V. and Grady, B.P., Macromolecules 41(20), 7274–7 (2008).
18.Angayarkanni, S.A. and Philip, J., J. Phys. Chem. C 117(17), 9009–19 (2013).
19.Wu, Y., Yan, X., Meng, P., Sun, P., Cheng, G. and Zheng, R., Carbon 94, 417423 (2015).
20.Wang, B., Zhou, L. and Peng, X., Int. J. Heat Mass Transfer 46(14), 2665–72 (2003).
21.Gharagozloo, P.E. and Goodson, K.E.. J. Appl. Phys. 108(7):074309 (2010).
22.Cherkasova, A.S. and Shan, J.W.. J. Heat Transfer 132(8), 082402 (2010).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed