Skip to main content Accessibility help

Refractory-Metal Diffusion Inhibitors Slow Erosion of Catalytic Metal Particles in the growth of Carbon Nanotubes

  • Michael J. Bronikowski (a1) and Melissa King (a1)


Catalytic growth of substantial amounts of Carbon Nanotubes (CNTs) to lengths greater than 1 – 2 cm is currently limited by several factors, including especially the deactivation of the catalyst particles due to erosion of catalyst atoms from the catalyst particles at elevated CNT growth temperatures. Inclusion of refractory metals in the CNT growth catalyst has recently been proposed as a method to prevent this catalytic particle erosion and deactivation, allowing the CNT to grow for greater times and reach substantially greater lengths. Here are presented results of recent investigations into this method. The system investigated employs Molybdenum as the erosion inhibitor and Iron as the CNT growth catalyst. Results show that inclusion of Mo leads to substantially longer catalyst particle lifetimes.


Corresponding author


Hide All
[1]Yacobson, B. and Smalley, R.. American Scientist 85, 324 (1997).
[2]Meo, M. and Rossi, M.. Composites Science and Technology 66, 1597 (2006).
[3]Peng, B., Locascio, M., Zapol, P., Li, S. Y., Mielke, S. L., Schatz, G. C., Espinosa, H. D.. Nature Nanotechnology 3, 626 (2008).
[4]Atkinson, K. R., Hawkins, S. C., Huynh, C., Skourtis, C., Dai, J., Zhang, M., Fang, S. L., Zakhidov, A. A., Lee, S. B., Aliev, A. E., Williams, C. D., Baughman, R. H.. Physica B: Condensed Matter 394, 339 (2007).
[5]Zhang, M., Atkinson, K. R., Baughman, R. H.. Science 306, 1358 (2004).
[6]Bronikowski, M. J.. Carbon 107, 297 (2016).
[7]Ratke, L. and Voorhees, P.. (Springer-Verlag, Berlin, 2002), pp. 117, 118. ISBN 3-540-42563-2
[8]Vengrenovich, R. D., Gudyma, Y. V., and Yarema, S. V.. Semiconductors 35, 1378 (2001).
[9]Zhang, R. F., Xie, H. H., Zhang, Y. Y., Zhang, Q., Jin, Y. G., Li, P., Qian, W. Z. and Wei, F.. Carbon 52, 232 (2013).
[10]Bronikowski, M. J.. J. Phys Chem. C 111, 17705 (2007).
[11]Hafner, J. H., Bronikowski, M. J., Azamian, B. R., Nikolaev, P., Rinzler, A. G., Colbert, D. T., Smith, K. A. and Smalley, R. E.. Chem. Phys. Lett. 296, 195 (1998).
[12]Huang, S., Woodson, M., Smalley, R. E., Liu, J.. Nano Letters 4, 1025 (2004).
[13]Cho, W., Schulz, M., and Shanov, V.. Carbon 72, 264 (2014).
[14]Kitiyanan, B., Alvarez, W., Harwell, D., and Resasco, D.. Chem. Phys Lett. 317, 498 (2000).
[15]Xiong, G. Y., Wang, D. Z., and Ren, Z. F.. Carbon 44, 969 (2006).
[16]Yun, Y., Shanov, V., Tu, Y., Subramaniam, S., and Schulz, M.. J. Phys. Chem. B 110, 23920 (2006).
[17]Puretzky, A., Geohegan, D., Jesse, S., Ivanov, I., Eres, G.. Appl. Phys. A 81, 223 (2005).
[18]Li, Q. W., Zhang, X. F., DePaula, R. F., Zheng, L. X., Zhao, Y. H., Stan, L., Holesinger, T., Arendt, P. N., Peterson, D. E., Zhu, Y. T.. Adv. Mater. 18, 3160 (2006).
[19]Futaba, D., Hata, K., Yamada, T., Mizuno, K., Yumura, M., Iijima, S.. Phys. Rev. Lett. 95, 056104 (2005).
[20]Cassell, A. M., Raymakers, J. A., Kong, J., Dai, H. J.. J. Phys. Chem. B 103, 6484 (1999).
[21]Venegoni, D., , D., Serp, P., Feurer, R., Kihn, Y., Vahlas, C., Kalck, P., P. Carbon 40, 1799 (2002).
[22]Cui, H., Eres, G., Howe, J. Y., Puretkzy, A., Varela, M., Geohegan, D. B., Lowndes, D. H.. Chem. Phys. Lett. 374, 222 (2003).
[23]Dai, H., Rinzler, A. G., Nikolaev, P., Thess, A., Colbert, D. T., Smalley, R. E.. Chem. Phys. Lett. 260, 471 (1996).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed