Skip to main content Accessibility help
×
Home

Pulsed Electrodeposition of Tin Electrocatalysts onto Gas Diffusion Layers for Carbon Dioxide Reduction to Formate

  • Sujat Sen (a1), Brian Skinn (a2), Tim Hall (a2), Maria Inman (a2), E. Jennings Taylor (a2) and Fikile R. Brushett (a1)...

Abstract

This paper discusses a pulse electroplating method for developing tin (Sn)-decorated gas diffusion electrodes (GDEs) for the electrochemical conversion of carbon dioxide (CO2) to formate. The pulse-plated Sn electrodes achieved current densities up to 388 mA/cm2, more than two-fold greater than conventionally prepared electrodes (150 mA/cm2), both at a formate selectivity of 80%. Optical and microscopic analyses indicate improvements in deposition parameters could further enhance performance by reducing the catalyst particle size.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Pulsed Electrodeposition of Tin Electrocatalysts onto Gas Diffusion Layers for Carbon Dioxide Reduction to Formate
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Pulsed Electrodeposition of Tin Electrocatalysts onto Gas Diffusion Layers for Carbon Dioxide Reduction to Formate
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Pulsed Electrodeposition of Tin Electrocatalysts onto Gas Diffusion Layers for Carbon Dioxide Reduction to Formate
      Available formats
      ×

Copyright

Corresponding author

*(Email: brushett@mit.edu)

References

Hide All
1. Merino-Garcia, I., Alvarez-Guerra, E., Albo, J., Irabien, A., Chem. Eng. J., 305, 104120 (2016).
2. Irtem, E., Andreu, T., Parra, A., Hernandez-Alonso, M.D., Garcia-Rodriguez, S., Riesco-Garcia, J.M., Penelas-Perez, G., Morante, J.R., J. Mater. Chem. A, 4, 1358213588 (2016).
3. Pletcher, D., Electrochem. Commun., 61, 97101 (2015) .
4. Appel, A. M. et al. , Chem. Reviews, 113, 66216658 (2013).
5. Verma, S., Kim, B., Jhong, H.-R.M., Ma, S., Kenis, P. J. A., ChemSusChem, 9, 19721979 (2016).
6. Hori, Y., Wakebe, H., Tsukamoto, T., Koga, O., Electrochim. Acta, 39, 18331839 (1994).
7. Agarwal, A.S., Zhai, Y., Hill, D., Sridhar, N., ChemSusChem, 4, 13011310 (2011).
8. Singh, A.K., Singh, S., Kumar, A., Catal. Sci. Technol. 6, 1240 (2016).
9. Del Castillo, A., Alvarez-Guerra, M., Solla-Gullón, J., Sáez, A., Montiel, V., Irabien, A., Appl. Energy, 157, 165173 (2015).
10. Kopljar, D., Inan, A., Vindayer, P., Wagner, N., Klemm, E., Appl, J.. Electrochem., 44, 11071116 (2014).
11. Prakash, G.K.S., Viva, F.A., Olah, G.A., J. Power Sources, 223, 6873 (2013).
12. Del Castillo, A., Alvarez-Guerra, M., Irabien, A., AIChE Journal, 60, 35573564 (2014).
13. Li, H., Oloman, C., J. Appl. Electrochem., 35, 955 (2005).
14. Jhong, H.-R.M., Brushett, F.R., Kenis, P.J.A., Adv. Energy Mater., 3, 589599 (2013).
15. Inman, M. E., Taylor, E.J., U.S. Patent No. 6,080,504, (27 June 2000).
16. Vilambi Reddy, N.R.K., Anderson, E. B., Taylor, E.J., U.S. Patent No. 5,084,144, 28 Jan 1992).
17. Taylor, E.J., Anderson, E.B., Vilambi, N.R.K., J. Electrochem. Soc., 139, L45L46 (1992).
18. Gebhart, L. E., Sun, J. J., Miller, P. O., Taylor, E. J., U.S. Patent No. 8,329,006 (11 December 2012).
19. Gebhart, L. E., Taylor, E. J., U.S. Patent No. 8,226,804 (24 July 2012).
20. Gebhart, L. E., Taylor, E. J., U.S. Patent No. 7,947,161 (24 May 2011).
21. Gebhart, L. E., Sun, J. J., Miller, P. O., Taylor, E. J., U.S. Patent No. 7,553,401 (30 June 2009).
22. Wu, J., Risalvato, F.G., Ma, S., Zhou, X.-D., J. Mater. Chem. A, 2, 16471651 (2014).
23. Sen, S., Liu, D., Palmore, G.T.R., ACS Catal., 4, 30913095 (2014).
24. Kopljar, D., Inan, A., Vindayer, P., Wagner, N., Klemm, E., Chem. Eng. Technol., 39, 20422050 (2016).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed