Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T04:59:23.773Z Has data issue: false hasContentIssue false

Photoluminescence spectra of zno microspheres: effects of exciton-polariton and Purcell factor

Published online by Cambridge University Press:  04 July 2019

Ching-Hang Chien
Affiliation:
Research Center for Applied Sciences, Academia Sinica, Taipei 115, Taiwan Nano Science and Technology Program, TIGP, Academia Sinica, Taipei 115, Taiwan Department of Engineering and System Science, National Tsing Hua University, Hsinchu 300, Taiwan
Yia-Chung Chang*
Affiliation:
Research Center for Applied Sciences, Academia Sinica, Taipei 115, Taiwan
*
Get access

Abstract

We present theoretical calculations of the line shapes of emission spectra of ZnO micro spheres (MSs), including the exciton-polariton and Purcell effect. Our calculation explains the red shift of emission peaks of whispering gallery modes (WGMs) in UV range commonly observed in ZnO MSs. We show that the red shift of the UV emission peak is caused by the combination of cavity effect and the polariton dispersion. The positions and relative strengths of sharp peaks arising from WGMs are also simulated by our calculation, and theoretical predictions match well with experimental data. Our calculation provides useful guide lines for the design of MS cavities for applications in white-light illumination, optical communication, and biosensing.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Braginsky, V. B., Gorodetsky, M.L., and Ilchenko, V.S., Phys. Lett. A 137, 393 (1989).CrossRefGoogle Scholar
Little, B. E., J. Lightwave Technology 17, (1999).CrossRefGoogle Scholar
Rayleigh, L., Phil. Mag. 27, 100 (1914).CrossRefGoogle Scholar
Vahala, K. J., Nature 424, 839 (2003).CrossRefGoogle Scholar
Nobis, T., Phys. Rev. Lett. 93, 3, (2004).CrossRefGoogle Scholar
Liu, J. Z., Appl. Phys. Lett. 92, 263102 (2008).CrossRefGoogle Scholar
Moirangthem, R. S., Cheng, P. J., Chien, P. C. H., Ngo, T.H., Chang, S-W, Tien, C. H., and Chang, Y. C., Optics Exp. 21, 3010 (2013).CrossRefGoogle Scholar
Okamoto, S., Inaba, K., Lida, T., Ishihara, H., Ichikawa, S., Ashida, M., Scientific Reports 4, 5186 (2014).CrossRefGoogle Scholar
Spillane, S. M., PhD thesis, California Institute of Technology (2004).Google Scholar
Mie, G., Ann. Phys. 25, 377 (1908).CrossRefGoogle Scholar
Ngo, T. H. B., Chang, Y. C., Optical Materials Express 7, 2692 (2017).CrossRefGoogle Scholar
Xu, D., Xie, W., Liu, W., Wang, J., Zhang, L., Wang, Y., Zhang, S., Sun, L., Shen, X., Chena, Z., Appl. Phys. Lett. 104, 082101 (2014).CrossRefGoogle Scholar
Chien, C. H., Wu, S. H., Ngo, T. H-B., Chang, Y. C., Phys. Rev. Appl. (Letter) 11, 051001 (2019), and references therein.CrossRefGoogle Scholar
Hopfield, J. J., Phys. Rev. 182, 945 (1969).CrossRefGoogle Scholar
Markel, V. A., J. Opt. Soc. Am. A 33, 1244 (2016).CrossRefGoogle Scholar
Handbook of Optics, 3rd edition, Vol. 4. McGraw-Hill (2009).Google Scholar
Schiller, S., Appl. Opt. 12, 555 (1973).Google Scholar
Rodnyi, P. A. and Khodyuk, I. V., Optics and Spectroscopy, 111, 776 (2011).CrossRefGoogle Scholar
Grundmann, M., The Physics of Semiconductors, 2nd. Ed., Springer-Verlag, (Berlin, 2010)CrossRefGoogle Scholar
Chen, M., Chang, Y. C., Hsieh, W. F., J. Opt. Soc. Am. A, 32, 1870 (2015).CrossRefGoogle Scholar
Ngo, T. H. B., Chien, C. H., Wu, S. H., Chang, Y. C., Optics Express 24, 16011 (2016).CrossRefGoogle Scholar
Janotti, A., Van de Walle, C. G., Appl. phys. Lett. 87, 122102 (2015).CrossRefGoogle Scholar
Purcell, E. M., Phys. Rev. 69, 681 (1946).CrossRefGoogle Scholar