Skip to main content Accessibility help

Photo-induced Contraction of Layered Materials

  • Hiroyuki Kumazoe (a1) (a2), Aravind Krishnamoorthy (a2), Lindsay Bassman (a2), Fuyuki Shimojo (a1), Rajiv K. Kalia (a2), Aiichiro Nakano (a2) and Priya Vashishta (a2)...


Ultrafast atomic dynamics induced by electronic and optical excitation opens new possibilities for functionalization of two-dimensional and layered materials. Understanding the impact of perturbed valence band populations on both the strong covalent bonds and relatively weaker van der Waals interactions is important for these anisotropic systems. While the dynamics of strong covalent bonds has been explored both experimentally and theoretically, relatively fewer studies have focused on the impact of excitation on weak bonds like van der Waals and hydrogen-bond interactions. We perform non-adiabatic quantum molecular dynamics (NAQMD) simulations to study photo-induced dynamics in MoS2 bilayer. We observe photo-induced non-thermal contraction of the interlayer distance in the MoS2 bilayer within 100 femtoseconds after photoexcitation. We identify a large photo-induced redistribution of electronic charge density, whose Coulombic interactions could explain the observed inter-layer contraction.


Corresponding author


Hide All
[1]Wang, H. N., Zhang, C. J., Chan, W. M., Tiwari, S., and Rana, F., Nature Communications 6 8831 (2015).
[2]Schaibley, J. R., Yu, H. Y., Clark, G., Rivera, P., Ross, J. S., Seyler, K. L., Yao, W., and Xu, X. D., Nature Reviews Materials 1 16055 (2016).
[3]Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N., and Strano, M. S., Nat Nanotechnol 7, 699 (2012).
[4]Kochat, V. et al. ., Advanced Materials 29, 1703754 (2017).
[5]Cho, S. et al. ., Science 349, 625 (2015).
[6]Song, S., Keum, D. H., Cho, S., Perello, D., Kim, Y., and Lee, Y. H., Nano Letters 16, 188 (2016).
[7]Kolobov, A. V., Fons, P., and Tominaga, J., Physical Review B 94, 094114 (2016).
[8]Waldecker, L., Bertoni, R., Hubener, H., Brumme, T., Vasileiadis, T., Zahn, D., Rubio, A., and Ernstorfer, R., Physical Review Letters 119, 036803 (2017).
[9]Bealing, C. R. and Ramprasad, R., Journal of Chemical Physics 139, 174904 (2013).
[10]Hohenberg, P. and Kohn, W., Phys. Rev. 136, B864 (1964).
[11]Perdew, J. P., Burke, K., and Ernzerhof, M., Physical Review Letters 77, 3865 (1996).
[12]Grimme, S., Antony, J., Ehrlich, S., and Krieg, H., Journal of Chemical Physics 132, 154104 (2010).
[13]Shimojo, F., Ohmura, S., Mou, W. W., Kalia, R. K., Nakano, A., and Vashishta, P., Computer Physics Communications 184, 1 (2013).
[14]Tully, J. C., The Journal of Chemical Physics 93, 1061 (1990).
[15]Mannebach, E. M. et al. ., Nano Letters, article ASAP, doi:10.1021/acs.nanolett.7b03955 (2017).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed