Skip to main content Accessibility help

Nanostructured V2O5/Nitrogen-doped Graphene Hybrids for High Rate Lithium Storage

  • Yiqun Yang (a1), Kayla Strong (a1), Gaind P. Pandey (a1) and Lamartine Meda (a1)


Vanadium Pentoxide (V2O5) has been identified as a potential cathode material owning to its high specific capacity, theoretically, 441 mAh g-1 for 3Li+ ions insertion/extraction. However, the intrinsic drawbacks of V2O5, i.e. structural instability and poor electronic and ionic conductivity, greatly inhibit its application as a cathode. Here, we report a cetyltrimethylammonium bromide (CTAB)-assisted hydrothermal reaction to synthesize V2O5 nanoclusters. Unique aggregated fiber structure was obtained after annealing. To achieve a porous structure and increase the conductivity, nitrogen-doped Graphene (NG) suspended in ethylene glycol was added to the reaction mixture. The obtained spherical V2O5 nanoparticles and NG sheets were randomly dispersed in the matrix of the V2O5 spheres. As a cathode material for lithium-ion batteries, the V2O5/NG hybrids demonstrate better rate performance compared to the bundle-like V2O5 fibers, delivering higher specific capacity of ∼ 300 and 150 mAh g-1 at a rate of C/10 and 5C, respectively. The enhanced performance in lithium storage are attributed to the synergistic effect of the nanostructured V2O5/NG composites.


Corresponding author


Hide All
[1]Gao, X. T., Zhu, X. D., Le, S. R., Yan, D. J., Qu, C. Y., Feng, Y. J., Sun, K. N. and Liu, T. T., ChemElectroChem 3, 1729 (2016).
[2]Wang, Y., Takahashi, K., Lee, K. H. and Cao, G. Z., Adv. Funct. Mater. 16, 1133 (2006).
[3]Liu, Y., Uchaker, E., Zhou, N., Li, J., Zhang, Q. and Cao, G., J. Mater. Chem. 22, 24439 (2012).
[4]Zhang, X.-F.; Wang, K.-X.; Wei, X.; Chen, J.-S. Chemistry of Materials 23, 5290 (2011).
[5]Sathiya, M., Prakash, A. S., Ramesha, K., Tarascon, J. M. and Shukla, A. K., J. Amer. Chem. Soc. 133, 16291 (2011).
[6]Kong, D., Li, X., Zhang, Y., Hai, X., Wang, B., Qiu, X., Song, Q., Yang, Q.-H. and Zhi, L., Energy & Environ. Sci 9, 906 (2016).
[7]Mateti, S., Rahman, M. M., Li, L. H., Cai, Q. and Chen, Y., RSC Adv. 6, 35287 (2016).
[8]Cheng, J., Wang, B., Xin, H. L., Yang, G., Cai, H., Nie, F. and Huang, H., J. Mater. Chem. A 1, 10814 (2013).
[9]Li, Z.-F., Zhang, H., Liu, Q., Liu, Y., Stanciu, L and Xie, J., ACS Appl. Mater. Interfaces 6, 18894 (2014).
[10]Yan, B., Li, X., Bai, Z., Zhao, Y., Dong, L., Song, X., Li, D., Langford, C. and Sun, X., Nano Energy 24, 32 (2016).
[11]Pandey, G. P., Liu, T., Brown, E., Yang, Y., Li, Y., Sun, X. S., Fang, Y. and Li, J., ACS Appl. Mater. Interfaces 8, 9200 (2016).
[12]Kim, T., Shin, J., You, T.S., Lee, H., , H. and Kim, J., Electrochim. Acta 164, 227 (2015).
[13]Gallasch, T., Stockhoff, T., Baither, D. and Schmitz, G., J. Power Sources 196, 428 (2011).
[14]Brown, E., Acharya, J., Pandey, G. P., Wu, J. and Li, J., Adv. Mater. Interfaces 3, 1600824 (2016).
[15]Pang, H., Song, Q., Tian, P., Cheng, J., Zou, N. and Ning, G., Mater.Lett. 171, 5 (2016).
[16]Mai, L., An, Q., Wei, Q., Fei, J., Zhang, P., Xu, X., Zhao, Y., Yan, M., Wen, W. and Xu, L., Small 10, 3032 (2014).
[17]Perera, S. D., Liyanage, A. D., Nijem, N., Ferraris, J. P., Chabal, Y. J. and Balkus, K. J., J. Power Sources 230, 130 (2013).
[18]Zhang, H., Xie, A., Wang, C., Wang, H., Shen, Y. and Tian, X., ChemPhysChem 15, 366 (2014).
[19]Chen, X., Sun, X. and Li, Y., Inorg. Chem. 41, 4524 (2002).
[20]Tan, H. T., Rui, X., Sun, W., Yan, Q. and Lim, T. M., Nanoscale 7, 14595 (2015).
[21]Liu, Q., Li, Z.-F., Liu, Y., Zhang, H., Ren, Y., Sun, C.-J., Lu, W., Zhou, Y., Stanciu, L., Stach, E. A. and Xie, J., Nat. Commun. 6, 6127 (2015).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed