Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T19:11:45.431Z Has data issue: false hasContentIssue false

Nanostructured interfaces between photosynthetic bacterial Reaction Center and Silicon electrodes

Published online by Cambridge University Press:  24 May 2019

Marco Lo Presti
Affiliation:
Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4 70126, Bari Italy
Danilo Vona
Affiliation:
Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4 70126, Bari Italy
Gabriella Leone
Affiliation:
Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4 70126, Bari Italy Centro di nanoscienza e tecnologia IIT-CNST, via Pascoli 70 20133, Milan Italy
Giorgio Rizzo
Affiliation:
Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4 70126, Bari Italy
Roberta Ragni
Affiliation:
Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4 70126, Bari Italy
Stefania R. Cicco
Affiliation:
Dipartimento di Chimica, Consiglio Nazionale delle Ricerche-Instituto di Chimica dei Composti OrganoMetallici (CNR-ICCOM), Via Orabona 4 70126, Bari, Italy
Francesco Milano
Affiliation:
CNR-ISPA, Institute of Sciences of Food Production, Lecce Unit, Via Prov.le Monteroni, 73100Lecce, Italy
Fabio Palumbo
Affiliation:
Istituto per Metodologie Organiche e Plasmi (IMIP)-CNR, Via Amendola 122/d-o 70126, Bari, Italy
Massimo Trotta*
Affiliation:
Istituto per i processi Chimico-FIsici (IPCF), CNR, Via Orabona 4, 70126, Bari, Italy
Gianluca M. Farinola*
Affiliation:
Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4 70126, Bari Italy
Get access

Abstract:

Optimizing interfaces between photosynthetic natural photoconverters, like photosynthetic bacterial Reaction Centers (RCs) and electrode surfaces represents a challenge in the progress of bio-optoelectronic devices. The features of the surfaces may result detrimental for the tertiary and quaternary structures of the RC, even resulting in the denaturation of the enzyme. Functional surfaces possessing both confinement capability and conductive features able to preserve the conformation of the biomolecule and its bioelectronic behaviours are highly needed. In this work, the RC is adsorbed on diatomaceous silica and plasma treated hydrophobic silicon based materials. Both the materials are demonstrated to be able to preserve and enhance the RC photoconverting activity. In particular, we evaluate the functioning of isolated bacterial RC interacting with flat pSi electrode through two nanotextured interfaces designed to address the RC: a thin conductive silicon film nanotextured in pillars via plasma treatment, and a cast film of nanostructured dielectric biosilica obtained from diatomaceous earth. The characterization of these interfaces, together with the RC photocurrent production measurements, pave the way to new generation RC based bio-devices for photocurrent investigation.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

Darder, M., Aranda, P., and Ruiz‐Hitzky, E., Adv. Mater. 19(10), 1309-1319 (2007).CrossRefGoogle Scholar
Giardi, M. T., and Pace, E., TRENDS in Biotech. 23(5), 257-263 (2005).CrossRefGoogle Scholar
Ormos, P., Fábián, L., Oroszi, L., Wolff, E. K., Ramsden, J. J., and Dér, A., Appl. Phys. Let., 80(21), 4060-4062 (2002).CrossRefGoogle Scholar
Babudri, F., De palma, D., Farinola, G. M., Ragni, R., and Naso, F., Synthesis, 2008(8), 1227-1232 (2008).Google Scholar
Babudri, F., Cardone, A., Cioffi, C. T., Farinola, G. M., Naso, F., and Ragni, R., Synthesis 2006(08), 1325-1332 (2006).CrossRefGoogle Scholar
Punzi, A., Coppi, D. I., Matera, S., Capozzi, M. A., Operamolla, A., Ragni, R., and Farinola, G. M., Org. Lett. 19(18), 4754-4757 (2017).CrossRefGoogle Scholar
Pisignano, D., Persano, L., Cingolani, R., Gigli, G., Babudri, F., Farinola, G. M., and Naso, F., Appl. Phys. Lett. 84(8), 1365 - 1367 (2004).CrossRefGoogle Scholar
Operamolla, A., Ragni, R., Omar, H. O., Iacobellis, G., Cardone, A., Babudri, F., and Farinola, G. M., Curr. Org. Synth. 9(6), 764-778 (2012).CrossRefGoogle Scholar
Ancora, R., Babudri, F., Farinola, G. M., Naso, F., and Ragni, R., Eur. J. Org. Chem. 2002(24), 4127-4130 (2002).3.0.CO;2-Z>CrossRefGoogle Scholar
Ragni, R., Punzi, A., Babudri, F., and Farinola, G. M., Eur. J. Org. Chem. 2018(27-28), 35003519 (2018).CrossRefGoogle Scholar
Ambrico, M., Cardone, A., Ligonzo, T., Augelli, V., Ambrico, P. F., Cicco, S., Farinola, G. M., Flannino, M., Perna, G., and Capozzi, V., Org. El. 11(11), 1809-1814 (2010).CrossRefGoogle Scholar
Ambrico, M., Ambrico, P. F., Cardone, A., Della Vecchia, N. F., Ligonzo, T., Cicco, S. R., Mastropasqua Talamo, M., Napolitano, A., Augelli, V., Farinola, G. M., and D’Ischia, M., J. Mater. Chem. C, 1(5), 1018-1028 (2013).CrossRefGoogle Scholar
Ambrico, M., Ambrico, F. P., Cardone, A., Ligonzo, T., Cicco, S. R., Di Mundo, R., Augelli, V., and Farinola, G. M., Adv. Mater. 23(29), 33323336, (2011).CrossRefGoogle Scholar
Operamolla, A., Ragni, R., Milano, F., Tangorra, R. R., Antonucci, A., Agostiano, A., Trotta, M., and Farinola, G. M., J. Mater. Chem. C, 3(25), 6471-6478 (2015).CrossRefGoogle Scholar
Milano, F., Punzi, A., Ragni, R., Trotta, M., and Farinola, G. M., Adv. Funct. Mater. 1805521, 1-17 (2018).Google Scholar
Mavelli, F., Trotta, M., Ciriaco, F., Agostiano, A., Giotta, L., Italiano, F., and Milano, F., Eur. Biophys. J. 43(6-7), 301-315 (2014).CrossRefGoogle Scholar
Farinola, G. M., Ragni, R., Milano, F., La Gatta, S., Tangorra, R. R., Talamo, M. M., Lo Presti, M., Agostiano, A., Cicco, S. R., Operamolla, A., Omar, H. O., and Trotta, M., Org. Sens. Bioel. IX, 9944, 1-6 (2016).Google Scholar
Milano, F., Tangorra, R. R., Hassan Omar, O., Ragni, R., Operamolla, A., Agostiano, A., Farinola, G. M., and Trotta, M., Ang. Chem. Int. Ed. 51(44), 11019-11023 (2012).CrossRefGoogle Scholar
Hassan Omar, O., La Gatta, S., Tangorra, R. R., Milano, F., Ragni, R., Operamolla, A., Argazzi, R., Chiorboli, C., Agostiano, A., Trotta, M., and Farinola, G. M., Bioconj. Chem. 27(7), 1614-1623 (2016).CrossRefGoogle Scholar
La Gatta, S., Milano, F., Farinola, G. M., Agostiano, A., Di Donato, M., Lapini, A., Foggi, P., Trotta, M., and Ragni, R., Biochim. Biophys. Acta. Bioenerg. 1860(1), 350-359 (2019).CrossRefGoogle Scholar
Altamura, E., Milano, F., Tangorra, R. R., Trotta, M., Hassan Omar, O., Stanod, P., and Mavelli, F., Proc. Natl. Acad. Sci. USA, 114(15), 3837-3842 (2017).CrossRefGoogle Scholar
Milano, F., Italiano, F., Agostiano, A., and Trotta, M., Photosynth. Res. 100(2), 107-112 (2009).CrossRefGoogle Scholar
Tangorra, R. R., Operamolla, A., Milano, F., Omar, O. H., Henrard, J., Comparelli, R., Italiano, F., Agostiano, A., De Leo, V., Marotta, R., Falqui, A., Farinola, G. M., and Trotta, M., Photochem. & Photobiol. Sci. 14(10), 1844-1852 (2015).CrossRefGoogle Scholar
Aroutiounian, V. M., Martirosyan, K. S., Hovhannisyan, A. S., and Soukiassian, P. G., J. Contemp. Phys. (Armenian Academy of Sciences), 43(2), 72-76 (2008).Google Scholar
Meunier, C. F., Rooke, J. C., Hajdu, K., Cutsem, P. V., Cambier, P., Leonard, A., and Su, B. L., Langmuir, 26(9), 65686575 (2010).CrossRefGoogle Scholar
Noji, T., Kamidaki, C., Kawakami, K., Shen, J. R., Kajino, T., Fukushima, Y., Sekitoh, T., and Itoh, S., Langmuir, 27(2), 705-713 (2010).CrossRefGoogle Scholar
Estephan, E., Saab, M. B., Agarwal, V., Cuisinier, F. J., Larroque, C., and Gergely, C., Adv. Funct. Mater. 21(11), 2003-2011 (2011).CrossRefGoogle Scholar
Palestino, G., Legros, R., Agarwal, V., Pérez, E., and Gergely, C., Sens. Act. B. Chem. 135(1), 27-34 (2008).CrossRefGoogle Scholar
Orosco, M. M., Pacholski, C., Miskelly, G. M., and Sailor, J., Adv. Mater. 18(11), 1393-1396 (2006).CrossRefGoogle Scholar
Hajdu, K., Gergely, C., Martin, M., Cloitre, T., Zimányi, L., Tenger, K., Khoroshyy, P., Palestino, G., Agarwal, V., Hernà Dì, K., Nè Meth, Z., and Nagy, Z., Langmuir, 28(32), 11866-11873 (2012).CrossRefGoogle Scholar
Ragni, R., Cicco, S. R., Vona, D., and Farinola, G. M., Adv. Mater., 30(19), 1704289-1704312 (2018).CrossRefGoogle Scholar
Ragni, R., Cicco, S., Vona, D., Leone, G., and Farinola, G. M., J. Mater. Res. 32(2), 279-291(2017).CrossRefGoogle Scholar
LeBlanc, G., Chen, G., Gizzie, E. A., Jennings, G. K., and Cliffel, D. E., Adv. Mater. 24(44) 5959-5962 (2012).CrossRefGoogle Scholar
Ambrico, M., Ambrico, P., Minafra, A., De Stradis, A., Vona, D., Cicco, S. R., Palumbo, F., Favia, P., and Ligonzo, T., Sensors 16(11), 1946-1959 (2016).CrossRefGoogle Scholar
Vona, D., Leone, G., Ragni, R., Palumbo, F., Evidente, A., Vurro, M., Farinola, G. M., and Cicco, S.R., MRS Adv . 1(57), 3825-3830 (2016).CrossRefGoogle Scholar
Leone, G., Vona, D., De Giglio, E., Bonifacio, M. A., Cometa, S., Fiore, S., Palumbo, F., Ragni, R., Farinola, G. M., and Cicco, S. R., Data in Brief, 24, 103831-103840 (2019).CrossRefGoogle Scholar
Vona, D., Urbano, L., Bonifacio, M. A., De Giglio, E., Cometa, S., Mattioli-Belmonte, M., Palumbo, F., Ragni, R., Cicco, S. R., and Farinola, G. M., Data in brief, 8, 312-319 (2016).CrossRefGoogle Scholar
Ragni, R., Scotognella, F., Vona, D., Moretti, L., Altamura, E., Ceccone, G., Mehn, D., Cicco, S. R., Palumbo, F., Lanzani, G., and Farinola, G. M., Adv. Funct. Mater. 28(24), 1706214-1706223 (2018).CrossRefGoogle Scholar
Della Rosa, G., Vona, D., Aloisi, A., Ragni, R., Di Corato, R., Lo Presti, M., Cicco, S. R., Altamura, E., Taurino, A., Catalano, M., Farinola, G. M., and Rinaldi, R., ACS Sust. Chem. & Eng. 7(2), 2207-2215 (2018).CrossRefGoogle Scholar
Vona, D., Cicco, S. R., Ragni, R., Leone, G., Presti, M. L., and Farinola, G. M., MRS Comm . 8(3), 911-917 (2018).CrossRefGoogle Scholar
Cicco, S. R., Vona, D., De Giglio, E., Cometa, S., Mattioli‐Belmonte, M., Palumbo, F., Ragni, R., and Farinola, G. M., ChemPlusChem, 80(7), 1104-1112 (2015).CrossRefGoogle Scholar
Cicco, S. R., Vona, D., Leone, G., Lo Presti, M., Palumbo, F., Altamura, E., Ragni, R., and Farinola, G. M., MRS Comm. 7(02), 214220 (2017).CrossRefGoogle Scholar
Buccolieri, A., Italiano, F., Dell’Atti, A. Buccolieri, G., Giotta, L., Agostiano, A., Milano, F., and Trotta, M., Annali di Chimica: J. Anal. Env. Cul. H. Chem. 96(3-4), 195-203 (2006).CrossRefGoogle Scholar
Mavelli, F., Trotta, M., Ciriaco, F., Agostiano, A., Giotta, L., Italiano, F., and Milano, F., Eur. Biophys. J. 43, 301315 (2014).CrossRefGoogle Scholar
Feher, G., Photochem. and photobiol. 14(3), 373-387 (1971).CrossRefGoogle Scholar
Straley, S. C., Parson, W. W., Mauzerall, D. C., and Clayton, R. K., Bioch. et Biophys. Act. (BBA)-Bioen. 305(3), 597-609 (1973).CrossRefGoogle Scholar