Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-24T21:28:30.877Z Has data issue: false hasContentIssue false

Nanoscale Self-Assembly Using Ion and Electron Beam Techniques: A Rapid Review

Published online by Cambridge University Press:  24 September 2020

Chunhui Dai
Affiliation:
Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN55455, United States
Kriti Agarwal
Affiliation:
Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN55455, United States
Jeong-Hyun Cho
Affiliation:
Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN55455, United States
Get access

Abstract

Nanoscale self-assembly, as a technique to transform two-dimensional (2D) planar patterns into three-dimensional (3D) nanoscale architectures, has achieved tremendous success in the past decade. However, an assembly process at nanoscale is easily affected by small unavoidable variations in sample conditions and reaction environment, resulting in a low yield. Recently, in-situ monitored self-assembly based on ion and electron irradiation has stood out as a promising candidate to overcome this limitation. The usage of ion and electron beam allows stress generation and real-time observation simultaneously, which significantly enhances the controllability of self-assembly. This enables the realization of various complex 3D nanostructures with a high yield. The additional dimension of the self-assembled 3D nanostructures opens the possibility to explore novel properties that cannot be demonstrated in 2D planar patterns. Here, we present a rapid review on the recent achievements and challenges in nanoscale self-assembly using electron and ion beam techniques, followed by a discussion of the novel optical properties achieved in the self-assembled 3D nanostructures.

Type
Review Article
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Jalil, A. R.; Chang, H.; Bandari, V. K.; Robaschik, P.; Zhang, J.; Siles, P. F.; Li, G.; Bürger, D.; Grimm, D.; Liu, X. Fully integrated organic nanocrystal diode as high performance room temperature NO2 sensor. Adv. Mater. 2016, 28, 2971-2977.CrossRefGoogle ScholarPubMed
Cho, J. H.; Keung, M. D.; Verellen, N.; Lagae, L.; Moshchalkov, V. V.; Van Dorpe, P.; Gracias, D. H. Nanoscale origami for 3D optics. Small 2011, 7, 1943-1948.CrossRefGoogle ScholarPubMed
Zhang, L.; Abbott, J. J.; Dong, L.; Peyer, K. E.; Kratochvil, B. E.; Zhang, H.; Bergeles, C.; Nelson, B. J. Characterizing the swimming properties of artificial bacterial flagella. Nano Lett. 2009, 9, 3663-3667.CrossRefGoogle ScholarPubMed
Dai, C.; Joung, D.; Cho, J. Plasma triggered grain coalescence for self-assembly of 3D nanostructures. Nano-micro Lett. 2017, 9, 27.Google ScholarPubMed
Eigenfeld, N. T.; Gray, J. M.; Brown, J. J.; Skidmore, G. D.; George, S. M.; Bright, V. M. Ultra-thin 3D Nano-Devices from Atomic Layer Deposition on Polyimide. Adv. Mater. 2014, 26, 3962-3967.CrossRefGoogle ScholarPubMed
Rykaczewski, K.; Hildreth, O. J.; Wong, C. P.; Fedorov, A. G.; Scott, J. H. J. Guided three-dimensional catalyst folding during metal-assisted chemical etching of silicon. Nano letters 2011, 11, 2369-2374.CrossRefGoogle ScholarPubMed
Songmuang, R.; Deneke, C.; Schmidt, O. Rolled-up micro-and nanotubes from single-material thin films. Appl. Phys. Lett. 2006, 89, 223109.CrossRefGoogle Scholar
Chalapat, K.; Chekurov, N.; Jiang, H.; Li, J.; Parviz, B.; Paraoanu, G. Self-Organized Origami Structures via Ion-Induced Plastic Strain. Adv. Mater. 2013, 25, 91-95.10.1002/adma.201202549CrossRefGoogle ScholarPubMed
Jiang, Z.; He, J.; Deshmukh, S. A.; Kanjanaboos, P.; Kamath, G.; Wang, Y.; Sankaranarayanan, S. K.; Wang, J.; Jaeger, H. M.; Lin, X. Subnanometre ligand-shell asymmetry leads to Janus-like nanoparticle membranes. Nat. Mater. 2015, 14, 912-917.CrossRefGoogle ScholarPubMed
Liu, J.; Xu, J.; Ni, Y.; Fan, F.; Zhang, C.; Yu, S. A family of carbon-based nanocomposite tubular structures created by in situ electron beam irradiation. ACS Nano 2012, 6, 4500-4507.CrossRefGoogle ScholarPubMed
Dai, C.; Li, L.; Wratkowski, D.; Cho, J. Electron Irradiation Driven Nanohands for Sequential Origami. Nano Lett. 2020, 20, 4975-4984.CrossRefGoogle ScholarPubMed
Dai, C.; Cho, J. In situ monitored self-assembly of three-dimensional polyhedral nanostructures. Nano Lett. 2016, 16, 3655-3660.CrossRefGoogle ScholarPubMed
Dai, C.; Agarwal, K.; Cho, J. Ion-Induced Localized Nanoscale Polymer Reflow for Three-Dimensional Self-Assembly. ACS Nano 2018, 12, 10251-10261.CrossRefGoogle ScholarPubMed
Supekar, O.; Brown, J.; Eigenfeld, N.; Gertsch, J.; Bright, V. Atomic layer deposition ultrathin film origami using focused ion beams. Nanotechnology 2016, 27, 49LT02.CrossRefGoogle ScholarPubMed
Giannuzzi, L. A.; Stevie, F. A. A review of focused ion beam milling techniques for TEM specimen preparation. Micron 1999, 30, 197-204.CrossRefGoogle Scholar
Park, Y. M.; Ko, D.; Yi, K.; Petrov, I.; Kim, Y. Measurement and estimation of temperature rise in TEM sample during ion milling. Ultramicroscopy 2007, 107, 663-668.CrossRefGoogle ScholarPubMed
Wu, C.; Li, F.; Pao, C.; Srolovitz, D. J. Folding sheets with ion beams. Nano Lett. 2017, 17, 249-254.CrossRefGoogle ScholarPubMed
Mao, Y.; Zheng, Y.; Li, C.; Guo, L.; Pan, Y.; Zhu, R.; Xu, J.; Zhang, W.; Wu, W. Programmable bidirectional folding of metallic thin films for 3D chiral optical antennas. Adv. Mater. 2017, 29, 1606482.CrossRefGoogle ScholarPubMed
Cho, J. H.; Gracias, D. H. Self-assembly of lithographically patterned nanoparticles. Nano Lett. 2009, 9, 4049-4052.CrossRefGoogle ScholarPubMed
Cho, J. H.; James, T.; Gracias, D. H. Curving nanostructures using extrinsic stress. Adv. Mater. 2010, 22, 2320-2324.CrossRefGoogle ScholarPubMed
Cho, J. H.; Azam, A.; Gracias, D. H. Three dimensional nanofabrication using surface forces. Langmuir 2010, 26, 16534-16539.CrossRefGoogle ScholarPubMed
Cho, J. H.; Datta, D.; Park, S. Y.; Shenoy, V. B.; Gracias, D. H. Plastic deformation drives wrinkling, saddling, and wedging of annular bilayer nanostructures. Nano Lett. 2010, 10, 5098-5102.CrossRefGoogle ScholarPubMed
Seminara, A.; Pokroy, B.; Kang, S. H.; Brenner, M. P.; Aizenberg, J. Mechanism of nanostructure movement under an electron beam and its application in patterning. Physical Review B 2011, 83, 235438.10.1103/PhysRevB.83.235438CrossRefGoogle Scholar
Rajput, N. S.; Le Marrec, F.; El Marssi, M.; Jouiad, M. Fabrication and manipulation of nanopillars using electron induced excitation. J. Appl. Phys. 2018, 124, 074301.CrossRefGoogle Scholar
Kim, T.; Jeong, H. E.; Suh, K. Y.; Lee, H. H. Stooped nanohairs: geometry-controllable, unidirectional, reversible, and robust gecko-like dry adhesive. Adv. Mater. 2009, 21, 2276-2281.CrossRefGoogle Scholar
Zharnikov, M.; Grunze, M. Modification of thiol-derived self-assembling monolayers by electron and x-ray irradiation: Scientific and lithographic aspects. J. Vac. Sci. Technol. B 2002, 20, 1793-1807.CrossRefGoogle Scholar
Pan, R.; Li, Z.; Liu, Z.; Zhu, W.; Zhu, L.; Li, Y.; Chen, S.; Gu, C.; Li, J. Rapid Bending Origami in Micro/Nanoscale toward a Versatile 3D Metasurface. Laser Photonics Rev. 2020, 14, 1900179.CrossRefGoogle Scholar
Mao, Y.; Pan, Y.; Zhang, W.; Zhu, R.; Xu, J.; Wu, W. Multi-direction-tunable three-dimensional meta-atoms for reversible switching between midwave and long-wave infrared regimes. Nano Lett. 2016, 16, 7025-7029.CrossRefGoogle ScholarPubMed
Liu, Z.; Liu, Z.; Li, J.; Li, W.; Li, J.; Gu, C.; Li, Z. 3D conductive coupling for efficient generation of prominent Fano resonances in metamaterials. Sci. Rep. 2016, 6, 1-8.Google ScholarPubMed
Liu, Z.; Du, S.; Cui, A.; Li, Z.; Fan, Y.; Chen, S.; Li, W.; Li, J.; Gu, C. High-Quality-Factor Mid-Infrared Toroidal Excitation in Folded 3D Metamaterials. Adv. Mater. 2017, 29, 1606298.CrossRefGoogle ScholarPubMed
Tian, X.; Liu, Z.; Lin, H.; Jia, B.; Li, Z.; Li, J. Five-fold plasmonic Fano resonances with giant bisignate circular dichroism. Nanoscale 2018, 10, 16630-16637.CrossRefGoogle ScholarPubMed
Yang, S.; Liu, Z.; Yang, H.; Jin, A.; Zhang, S.; Li, J.; Gu, C. Intrinsic Chirality and Multispectral Spin-Selective Transmission in Folded Eta-Shaped Metamaterials. Adv. Opt. Mater. 2020, 8, 1901448.CrossRefGoogle Scholar
Liu, Z.; Du, H.; Li, J.; Lu, L.; Li, Z.; Fang, N. X. Nano-kirigami with giant optical chirality. Sci. Adv. 2018, 4, eaat4436.CrossRefGoogle ScholarPubMed
Liu, Z.; Xu, Y.; Ji, C.; Chen, S.; Li, X.; Zhang, X.; Yao, Y.; Li, J. Fano-Enhanced Circular Dichroism in Deformable Stereo Metasurfaces. Adv. Mater. 2020, 32, 1907077.CrossRefGoogle ScholarPubMed
Si, K. J.; Sikdar, D.; Chen, , , Y.; Eftekhari, F.; Xu, Z.; Tang, Y.; Xiong, W.; Guo, P.; Zhang, S.; Lu, Y. Giant plasmene nanosheets, nanoribbons, and origami. ACS Nano 2014, 8, 11086-11093.CrossRefGoogle ScholarPubMed
Joung, D.; Nemilentsau, A.; Agarwal, K.; Dai, C.; Liu, C.; Su, Q.; Li, J.; Low, T.; Koester, S. J.; Cho, J. Self-assembled three-dimensional graphene-based polyhedrons inducing volumetric light confinement. Nano Lett. 2017, 17, 1987-1994.CrossRefGoogle ScholarPubMed
Agarwal, K.; Dai, C.; Joung, D.; Cho, J. Nano-Architecture Driven Plasmonic Field Enhancement in 3D Graphene Structures. ACS Nano 2018, 13, 1050-1059.Google Scholar
Papasimakis, N.; Fedotov, V.; Savinov, V.; Raybould, T.; Zheludev, N. Electromagnetic toroidal excitations in matter and free space. Nat. Mater. 2016, 15, 263-271.CrossRefGoogle ScholarPubMed
Xu, W.; Li, T.; Qin, Z.; Huang, Q.; Gao, H.; Kang, K.; Park, J.; Buehler, M.J.; Khurgin, J.B.; Gracias, D. H. Reversible MoS2 origami with spatially resolved and reconfigurable photosensitivity. Nano Lett. 2019, 19, 7941-7949.CrossRefGoogle ScholarPubMed
Randhawa, J. S.; Keung, M. D.; Tyagi, P.; Gracias, D. H. Reversible actuation of microstructures by surface-chemical modification of thin-film bilayers. Adv. Mater. 2010, 22, 407-410.CrossRefGoogle ScholarPubMed