Skip to main content Accessibility help
×
Home

Nanodroplets Behavior on Graphdiyne Membranes

  • Ygor M. Jaques (a1) and Douglas S. Galvão (a1)

Abstract

In this work we have investigated, by fully atomistic reactive (force field ReaxFF) molecular dynamics simulations, some aspects of impact dynamics of water nanodroplets on graphdiyne-like membranes. We simulated graphdiyne-supported membranes impacted by nanodroplets at different velocities (from 100 up to 1500 m/s). The results show that due to the graphdiyne porous and elastic structure, the droplets present an impact dynamics very complex in relation to the ones observed for graphene membranes. Under impact the droplets spread over the surface with a maximum contact radius proportional to the impact velocity. Depending on the energy impact value, a number of water molecules were able to percolate the nanopore sheets. However, even in these cases the droplet shape is preserved and the main differences between the different impact velocities cases reside on the splashing pattern at the maximum spreading.

Copyright

Corresponding author

References

Hide All
1. Novoselov, K. S. et al. , Science 306, 666 (2004).
2. Baughman, R. H., Eckhardt, H., and Kertesz, M., J. Chem. Phys. 87, 6687 (1987).
3. Coluci, V. R., Braga, S. F., Legoas, S. B., Galvao, D. S., and Baughman, R. H., Phys. Rev. B 68, 35430 (2003).
4. Coluci, V. R., Braga, S. F., Legoas, S. B., Galvao, D. S., and Baughman, R. H., Nanotechnology 15, S142 (2004).
5. Autreto, P. A. S., de Sousa, J. M., and Galvao, D. S., Carbon N. Y. 77, 829 (2014).
6. Li, G. X., Li, Y. L., Liu, H. B., Guo, Y. B., Li, Y. J., and Zhu, D. B., Chem Commun 46, 3256 (2010).
7. Jiao, Y., Du, A., Hankel, M., Zhu, Z., Rudolph, V., and Smith, S. C., Chem. Commun. 47, 11843 (2011).
8. Gao, X., Zhou, J., Du, R., Xie, Z., Deng, S., Liu, R., Liu, Z., and Zhang, J., Adv. Mater. 28, 168 (2016).
9. Lin, S. and Buehler, M. J., Nanoscale 5, 11801 (2013).
10. Yarin, A. L., Annu. Rev. Fluid Mech. 38, 159 (2006).
11. Juarez, G., Gastopoulos, T., Zhang, Y., Siegel, M. L., and Arratiab, P. E., Phys. Fluids 24, 2012 (2012).
12. Allen, R. F., J. Colloid Interface Sci. 51, 350 (1975).
13. Liu, J., Vu, H., Yoon, S. S., Jepsen, R. a., and Aguilar, G., At. Sprays 20, 297 (2010).
14. Chenoweth, K., van Duin, A. C. T., and a Goddard, W., J. Phys. Chem. A 112, 1040 (2008).
15. Plimpton, S., J. Comput. Phys. 117, 1 (1995).
16. Nosé, S., J. Chem. Phys. 81, 511 (1984).
17. Hoover, W. G., Phys. Rev. A 31, 1695 (1985).
18. Jaques, Y. M., Brunetto, G., and Galvão, D. S., MRS Adv. 1, 675 (2016).

Keywords

Nanodroplets Behavior on Graphdiyne Membranes

  • Ygor M. Jaques (a1) and Douglas S. Galvão (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed