Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T13:52:57.909Z Has data issue: false hasContentIssue false

Nanodroplets Behavior on Graphdiyne Membranes

Published online by Cambridge University Press:  30 January 2017

Ygor M. Jaques*
Affiliation:
Applied Physics Department, University of Campinas, Campinas, SP 13081-970, Brazil
Douglas S. Galvão
Affiliation:
Applied Physics Department, University of Campinas, Campinas, SP 13081-970, Brazil
*
Get access

Abstract

In this work we have investigated, by fully atomistic reactive (force field ReaxFF) molecular dynamics simulations, some aspects of impact dynamics of water nanodroplets on graphdiyne-like membranes. We simulated graphdiyne-supported membranes impacted by nanodroplets at different velocities (from 100 up to 1500 m/s). The results show that due to the graphdiyne porous and elastic structure, the droplets present an impact dynamics very complex in relation to the ones observed for graphene membranes. Under impact the droplets spread over the surface with a maximum contact radius proportional to the impact velocity. Depending on the energy impact value, a number of water molecules were able to percolate the nanopore sheets. However, even in these cases the droplet shape is preserved and the main differences between the different impact velocities cases reside on the splashing pattern at the maximum spreading.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Novoselov, K. S. et al. , Science 306, 666 (2004).Google Scholar
Baughman, R. H., Eckhardt, H., and Kertesz, M., J. Chem. Phys. 87, 6687 (1987).CrossRefGoogle Scholar
Coluci, V. R., Braga, S. F., Legoas, S. B., Galvao, D. S., and Baughman, R. H., Phys. Rev. B 68, 35430 (2003).CrossRefGoogle Scholar
Coluci, V. R., Braga, S. F., Legoas, S. B., Galvao, D. S., and Baughman, R. H., Nanotechnology 15, S142 (2004).Google Scholar
Autreto, P. A. S., de Sousa, J. M., and Galvao, D. S., Carbon N. Y. 77, 829 (2014).CrossRefGoogle Scholar
Li, G. X., Li, Y. L., Liu, H. B., Guo, Y. B., Li, Y. J., and Zhu, D. B., Chem Commun 46, 3256 (2010).Google Scholar
Jiao, Y., Du, A., Hankel, M., Zhu, Z., Rudolph, V., and Smith, S. C., Chem. Commun. 47, 11843 (2011).Google Scholar
Gao, X., Zhou, J., Du, R., Xie, Z., Deng, S., Liu, R., Liu, Z., and Zhang, J., Adv. Mater. 28, 168 (2016).CrossRefGoogle Scholar
Lin, S. and Buehler, M. J., Nanoscale 5, 11801 (2013).Google Scholar
Yarin, A. L., Annu. Rev. Fluid Mech. 38, 159 (2006).Google Scholar
Juarez, G., Gastopoulos, T., Zhang, Y., Siegel, M. L., and Arratiab, P. E., Phys. Fluids 24, 2012 (2012).Google Scholar
Allen, R. F., J. Colloid Interface Sci. 51, 350 (1975).Google Scholar
Liu, J., Vu, H., Yoon, S. S., Jepsen, R. a., and Aguilar, G., At. Sprays 20, 297 (2010).Google Scholar
Chenoweth, K., van Duin, A. C. T., and a Goddard, W., J. Phys. Chem. A 112, 1040 (2008).Google Scholar
Plimpton, S., J. Comput. Phys. 117, 1 (1995).Google Scholar
Nosé, S., J. Chem. Phys. 81, 511 (1984).Google Scholar
Hoover, W. G., Phys. Rev. A 31, 1695 (1985).Google Scholar
Jaques, Y. M., Brunetto, G., and Galvão, D. S., MRS Adv. 1, 675 (2016).CrossRefGoogle Scholar