Hostname: page-component-7c8c6479df-94d59 Total loading time: 0 Render date: 2024-03-29T08:39:45.157Z Has data issue: false hasContentIssue false

Molecular Simulation Study of Piezoelectric Potential Distribution in a ZnO Nanowire under Mechanical Bending

Published online by Cambridge University Press:  02 May 2017

Dan Tan
Affiliation:
Department of Mechanical & Aerospace Engineering, The George Washington University, Washington, DC 20052, USA School of Mechanical Engineering, Tianjin University, Tianjin 300072, China
Yuan Xiang
Affiliation:
Department of Mechanical & Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
Yongsheng Leng*
Affiliation:
Department of Mechanical & Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
*
*(Email: leng@gwu.edu)
Get access

Abstract

Molecular dynamics (MD) simulations are carried out to investigate the interfacial sliding dynamics of a ZnO piezoelectric nanogenerator in an atomic force microscope (AFM) setting. The molecular system includes a vertically aligned ZnO nanowire along the [0001] direction and a Pt (111) metal tip sliding over it. We calculate the piezoelectric potential distributions based on the equilibrium molecular configurations using classical ionic charges. Simulation results reveal the very detailed evolution changes of the piezopotential within the nanowire, which are largely contributed from the different internal tensile or compressive strains induced by mechanical bending of the ZnO nanowire. Variations of the normal contact and lateral frictional forces versus the sliding distance of the Pt metal tip are also presented.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wang, Z.L., Nano Res. 1, 1 (2008).CrossRefGoogle Scholar
Fan, F.R., Tang, W., and Wang, Z.L., Adv. Mater. 4283 (2016).CrossRefGoogle Scholar
Chang, J., Dommer, M., Chang, C., and Lin, L., Nano Energy 1, 356 (2012).CrossRefGoogle Scholar
Wang, Z.L., Mater. Today 20, 74 (2017).CrossRefGoogle Scholar
Wang, X., Nano Energy 1, 13 (2012).CrossRefGoogle Scholar
Wang, X., Yu, R., Peng, W., Wu, W., Li, S., and Wang, Z.L., Adv. Mater. 27, 8067 (2015).CrossRefGoogle Scholar
Wang, X., Yu, R., Jiang, C., Hu, W., Wu, W., Ding, Y., Peng, W., Li, S., and Wang, Z.L., Adv. Mater. 7234 (2016).CrossRefGoogle ScholarPubMed
Wang, Z.L. and Song, J., Science (80-. ). 312, 242 (2006).CrossRefGoogle ScholarPubMed
Gao, Y. and Wang, Z.L., Nano Lett. 7, 2499 (2007).CrossRefGoogle Scholar
Zhu, G., Yang, R., Wang, S., and Wang, Z.L., Nano Lett. 10, 3151 (2010).CrossRefGoogle Scholar
Hu, Y., Xu, C., Zhang, Y., Lin, L., Snyder, R.L., and Wang, Z.L., Adv. Mater. 23, 4068 (2011).CrossRefGoogle Scholar
Lee, S., Bae, S.H., Lin, L., Yang, Y., Park, C., Kim, S.W., Cha, S.N., Kim, H., Park, Y.J., and Wang, Z.L., Adv. Funct. Mater. 23, 2445 (2013).CrossRefGoogle Scholar
Liu, C., Yu, A., Peng, M., Song, M., Liu, W., Zhang, Y., and Zhai, J., J. Phys. Chem. C 120, 6971 (2016).CrossRefGoogle Scholar
Morkoc, H. and Ozgur, U., General Properties of ZnO (2009).Google Scholar
Dai, S., Gharbi, M., Sharma, P., and Park, H.S., J. Appl. Phys. 110, 1 (2011).Google Scholar
Xu, H., Dong, L., Shi, X.Q., Van Hove, M.A., Ho, W.K., Lin, N., Wu, H.S., and Tong, S.Y., Phys. Rev. B - Condens. Matter Mater. Phys. 89, 1 (2014).Google Scholar
Plimpton, S., J. Comput. Phys. 117, 1 (1995).CrossRefGoogle Scholar
Binks, D.J. and Grimes, R.W., J. Am. Ceram. Soc. 76, 2370 (1993).CrossRefGoogle Scholar
Daw, I., Baskes, S, Phys. Rev. B 29, (1984).CrossRefGoogle Scholar
Rappé, A. K., Casewit, C. J., Colwell, K.S., Goddard, W.A. III, and Skiff, W.M., J. Am. Chem. Soc. 114, 10024 (1992).CrossRefGoogle Scholar
Fennell, C.J. and Gezelter, J.D., J. Chem. Phys. 124, (2006).CrossRefGoogle Scholar