Skip to main content Accessibility help
×
Home

Measuring Surface Energies of GaAs (100) and Si (100) by Three Liquid Contact Angle Analysis (3LCAA) for Heterogeneous Nano-BondingTM

  • Christian E. Cornejo (a1) (a2), Michelle E. Bertram (a1) (a2), Timoteo C. Diaz (a1) (a2), Saaketh R. Narayan (a3), Sukesh Ram (a3), Karen L. Kavanagh (a4), Nicole Herbots (a1) (a3), Jack M. Day (a3), Franscesca J. Ark (a3), Ajit Dhamdhere (a1), Robert J. Culbertson (a3) and Rafiqul Islam (a1) (a3)...

Abstract

Analysis of the total surface energy γT and its three components as established by the van Oss-Chaudhury-Good Theory (vOCG) is conducted via Three Liquid Contact Angle Analysis (3LCAA). γT is correlated with the composition of the top monolayers (ML) obtained from High-Resolution Ion Beam Analysis (HR-IBA). Control of γT enables surface engineering for wafer bonding (Nano-BondingTM) and/or epitaxial growth. Native oxides on boron-doped p-Si(100) are found to average γT of 53 ± 1.4 mJ/m2) and are always hydrophilic. An HF in methanol or aqueous HF etch for 60 s always renders Si(100) hydrophobic. Its γT decreases by 20% to 44 ± 3 mJ/m2 in HF in methanol etch and by 10% to 48 ± 3 mJ/m2 in aqueous HF. On the contrary, GaAs(100) native oxides are found to always be hydrophobic. Tellurium n+-doped GaAs(100) yields an average of γT of 37 ± 2 mJ/m2, 96% of which is due to the Lifshitz-Van der Waals molecular interactions (γLW = 36 ± 1 mJ/m2). However, hydrophobic GaAs(100) can be made highly hydrophilic. After etching, γT increases by almost 50% to 66 ± 1.4 mJ/m2. 3LCAA shows that the γT increase is due to electron acceptor and donor interactions, while the Lifshitz-van der Waals energy γLW remains constant. IBA combining the 3.039 ± 0.01 MeV oxygen nuclear resonance with <111> channeling, shows that oxygen on Si(100) decreases by 10% after aqueous HF etching, from 13.3 ± 0.3 monolayers (ML) to 11.8 ± 0.4 ML 1 hour after etch.Te-doped GaAs(100) exhibits consistent oxygen coverage of 7.2 ± 1.4 ML, decreasing by 50% after etching to a highly hydrophilic surface with 3.6 ± 0.2 oxygen ML. IBA shows that etching does not modify the GaAs surface stoichiometry to within 1% . Combining 3LCAA with HR-IBA provides a quantitative metrology to measure how GaAs and Si surfaces can be altered to a different hydroaffinity and surface termination.

Copyright

Corresponding author

References

Hide All
1.Kaur, G., Dwivedi, N., Zheng, X., Liao, B., Peng, L. Z., Danner, A., Stangl, R., and Bhatia, C. S., IEEE J. Photovolt. 7, 1224 (2017).
2.Peng, W., Rupich, S. M., Shafiq, N., Gartstein, Y. N., Malko, A. V., and Chabal, Y. J., Chem. Rev. 115, 12764 (2015).
3.Muller, D. A., Sorsch, T., Moccio, S., Baumann, F. H., Evans-Lutterodt, K., and Timp, G., Nature 399, 758 (1999).
4.Kern, W. and Puotinen, D. A., RCA Rev. 31, 187 (1970).
5.Yablonovitch, E., Allara, D., Chang, C. C., Gmitter, T., and Bright, T. B., Phys. Rev. Letts. 57, 249 (1986).
6.Higashi, G. S., Becker, R. S., Chabal, Y. J., and Becker, A. J., Appl. Phys. Letts. 58, 1656 (1991).
7.Herbots, N., Shaw, J., Hurst, Q., Grams, M., Culbertson, R., Smith, D. J., Atluri, V., Zimmerman, P., and Queeney, K., Matls. Sci. Eng. B 87, 303 (2001).
8.Royea, W. J., Juang, A., and Lewis, N. S., Appl. Phys. Letts. 77, 1988 (2000).
9.Peng, W., DeBenedetti, W. J. I., Kim, S., Hines, M. A., and Chabal, Y. J., 104, 241601 (2014).
10.Resch-Esser, U., J. of Vac. Sci. & Technol. B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 13, 1672 (1995).
11.Resch, U., Esser, N., Raptis, Y., Richter, W., Wasserfall, J., Förster, A., and Westwood, D., Surf. Sci. 269-270, 797 (1992).
12.Tong, Q.-Y. and Gösele, U., Semiconductor Wafer Bonding (John Wiley, 1999, 1999).
13.Brillson, L. J., Surfaces and Interfaces of Electronic Materials (Wiley-IEEE Press, 2010).
14.Van Oss, C. J., Chaudhury, M. K., and Good, R. J., Chem. Rev. 88, 927 (1988).
15.Code Available upon request by contacting the authors at .
16.Mayer, M., Amer. Inst. Phys. Conf. Proceedings 475, p. 541 (1999).
17.Herbots, Nicole, Culbertson, Robert. J., Bradley, James D., Hart, Murdock A., Sell, David A., Whaley, Shawn D., US Patent N° 9,018,077 (28 April 2015)
18.Herbots, Nicole, Whaley, Shawn D., Culbertson, Robert J., Bennett-Kennett, Ross, Murphy, Ashlee M, Bade, Matthew T., Farmer, Sam, Watson, Clarizza F., Acharya, Ajjiya, US Patent N° 9,589,801 (7 March 2017)
19.Herbots, Nicole, Bradley, James, Shaw, Justin Maurice, Culbertson, Robert J., Vasudeva Atluri US Patent N° 7,851,365 (14 December 14, 2010)
20.Herbots, Nicole, Islam, Rafiqul, US Patents pending (2018), filed March 18, 2018
21.Herbots, Nicole, Islam, Rafiqul, US Patents pending (2018), filed March 18, 2018
22.Bennett-Kennett, R., Wet : Catalyzing Molecular Cross-Bridges and Interphases Between Nanoscopically Smoothed Si-Based Surfaces And Tailoring Surface Energy Components, Senior Thesis, Arizona State University, Dept. of Physics (2013)
23.Davis, E. W., Wet NanobondingTM Of Semiconducting Surfaces Optimized Via Surface Energy Modification Using Three Liquid Contact Angle Analysis as A Metrology, Senior Thesis Arizona State University, Dept. of Physics (2016)
24.Narayan, S., Day, J., Thinakaran, H., Herbots, N., Bertram, M., Cornejo, C., Diaz, T., Kavanagh, K., Culbertson, R. J., Ark, F., Ram, S., Mangus, M., Islam, R., This Conference, submitted to MRS Advances (2018)
25.Good, R. J; van Oss, C. J., The Modern Theory of Contact Angles and the Hydrogen bond Components of Surface Energies, In: Loeb, G. I.; Schrader, M.E. (Hrg.): Modern approaches to wettability. 1992, P. 127.
26.van Oss, C. J.; Chaudhury, M. K.; Good, R. J., J. Chem. Rev. 88 (1988), P. 927941.
27.Rieke, P. C., Journal of Crystal Growth. 182, p. 472484 (1997)
28.Faibish, R. S., Colloid, J. and Interface Sci., 256m 341350
29.Carre, A., J. Adhesion Sci. Technol., 21 (10), 961981 (2007)
30.Herbots, N., Xing, Q., Hart, M., Bradley, J. D., Sell, D. A., Culbertson, R. J., & ,Wilkens, B. J. Nucl. Instr. and Meth. in Physics Research, Section B: 272, 330333 (2012).
31.Herbots, Nicole, Atluri, Vasudeva P., Bradley, James D., Swati, Banerjee, Hurst, Quinton B., Xiang, Jiong, US Patent N° 6613677 (2 September 2003)
32.Shaw, Justin M., Herbots, N., Hurst, Q. B., Bradley, D., Culbertson, R. J., Atluri, V., and Queeney, K. T., Journal of Applied Physics 100, 104109 (2006).
33.Atluri, Vasudeva, Herbots, Nicole, Dagel, Daryl, Baghvat, Shantanu, and Whaley, Shawn Nucl. Instr. and Meth. in Phys. Res., Section B 118(s 1–4):144150 (1996)
34.Baker, Brian, Lee, Wey-Liyn, Kintz, Jacob, Yano, Aliya, Narayan, Saaketh, Day, Jack, Herbots, Nicole, Akaname, Yuko, Islam, Rafiqul, abstract accepted to the 65th Annual Fall Meeting of the American Vaccuum Society, Long Beach, CA, October 21-26 2018, manuscript to be submitted to the J. of Vac. Sci. & Technol. (2018)

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed