Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-20T02:48:51.505Z Has data issue: false hasContentIssue false

The magnetic transitions and dynamics in the multiferroic Lu0.5Sc0.5FeO3

Published online by Cambridge University Press:  22 February 2016

Junjie Yang*
Affiliation:
Department of physics, University of Virginia, Charlottesville, VA 22903, U.S.A.
Chunruo Duan
Affiliation:
Department of physics, University of Virginia, Charlottesville, VA 22903, U.S.A.
John R. D. Copley
Affiliation:
Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, U.S.A.
Craig M. Brown
Affiliation:
Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, U.S.A. Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, U.S.A.
Despina Louca
Affiliation:
Department of physics, University of Virginia, Charlottesville, VA 22903, U.S.A.
*
Get access

Abstract

In spite of its frustrated lattice, the multiferroic Lu0.5Sc0.5FeO3 exhibits two consecutive magnetic transitions at TN1 ≈ 175 K and TN2 ≈ 70 K determined from neutron diffraction. In the ordered state, magnetic fluctuations are present, most likely arising from the in-plane frustrated interaction of the Fe hexagonal lattice. Furthermore, a crossover of the magnetic intensity is observed from elastic to inelastic upon warming, indicating that magnetic fluctuations persist well above TN1, a common feature in hexagonal multiferroics.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kimura, T., Annu. Rev. Mater. Res. 37, 387 (2007).CrossRefGoogle Scholar
Katsura, H., Nagaosa, N., and Balatsky, A. V., Phys. Rev. Lett. 95, 057205 (2005).CrossRefGoogle Scholar
Cheong, S.-W. and Mostovoy, M., Nat. Mater. 6, 13 (2007).CrossRefGoogle Scholar
Arima, T.-h., J. Phys. Soc. Jpn. 80, 052001 (2011).CrossRefGoogle Scholar
Van Aken, B. B., Palstra, Thomas T.M., Filippetti, Alessio and Spaldin, Nicola A., Nat. Mater. 3, 164 (2004).CrossRefGoogle Scholar
Cho, D.-Y., Kim, J.-Y., Park, B.-G., Rho, K.-J., Park, J.-H., Noh, H.-J., Kim, B.J., Oh, S.-J., Park, H.-M., Ahn, J.-S., Ishibashi, H., Cheong, S-W., Lee, J. H., Murugavel, P., Noh, T. W., Tanaka, A., and Jo, T., Phys. Rev. Lett. 98, 217601 (2007).CrossRefGoogle Scholar
Wang, Wenbin, Zhao, Jun, Wang, Wenbo, Gai, Zheng, Balke, Nina, Chi, Miaofang, Lee, Ho Nyung, Tian, Wei, Zhu, Leyi, Cheng, Xuemei, Keavney, David J., Yi, Jieyu, Ward, Thomas Z., Snijders, Paul C., Christen, Hans M., Wu, Weida, Shen, Jian, and Xu, Xiaoshan, Phys. Rev. Lett. 110, 237601 (2013).CrossRefGoogle Scholar
Masuno, Atsunobu, Ishimoto, Atsushi, Moriyoshi, Chikako, Hayashi, Naoaki, Kawaji, Hitoshi,Kuroiwa, Yoshihiro and Inoue, Hiroyuki, Inorg. Chem. 52, 11889 (2013).CrossRefGoogle Scholar
Shin-ichiro, , Louca, Despina, Chi, Songxue, Matsuda, Masaaki, Qiu, Yiming, Copley, John R. D., and Cheong, Sang-Wook, J. Phys. Soc. Jpn 83, 024601 (2014).Google Scholar
Copley, J.R.D. and Cook, J.C., Chem. Phys. 292, 477 (2003).CrossRefGoogle Scholar
Tong, P., Louca, D., Lee, N., and Cheong, S.-W., Phys. Rev. B 86, 094419 (2012).CrossRefGoogle Scholar
Disseler, Steven M., Luo, Xuan, Gao, Bin, Oh, Yoon Seok, Hu, Rongwei, Wang, Yazhong, Quintana, Dylan, Zhang, Alexander, Huang, Qingzhen, Lau, June, Paul, Rick, Lynn, Jeffrey W., Cheong, Sang-Wook, and Ratcliff, William II, Phys. Rev. B 92, 054435 (2015).CrossRefGoogle Scholar
Poienar, M., Damay, F., Martin, C., Robert, J., and Petit, S., Phys. Rev. B 81, 104411 (2010).CrossRefGoogle Scholar
Lee, S.-H., Louca, D., Ueda, H., Park, S., Sato, T. J., Isobe, M., Ueda, Y., Rosenkranz, S., Zschack, P., Íñiguez, J., Qiu, Y., and Osborn, R., Phys. Rev. Lett. 93, 156407 (2004).CrossRefGoogle Scholar