Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-24T04:46:09.606Z Has data issue: false hasContentIssue false

Investigations on Dielectric phase transition behavior of Pb(Fe0.5-xScx)Nb0.5O3 Multiferroic Ceramics

Published online by Cambridge University Press:  22 February 2016

Bandi Mallesham
Affiliation:
Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy-502285, Telangana, India
Ranjith Ramadurai*
Affiliation:
Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy-502285, Telangana, India
*
*Corresponding author email: ranjith@iith.ac.in
Get access

Abstract

Phase pure Pb[(Fe0.5-xScx)Nb0.5]O3 [x = 0 to 0.5] multiferroic relaxors have been synthesized to study the effect of Sc on dielectric phase tansition. Rietveld refinement of x-ray diffraction patterns confirm that the structure transforms from monoclinic (Cm) to rhomobohedral (R3m) at x = 0.3. Absence of low frequency dielectric response in compositions with low Sc content attributed to interfacial polarizabilty arising due to differences in conductivities of grain and grain boundary. Moreover, value of diffusivity parameter (γ) of high of Sc content compositions is near to 2, confirms relaxor charactertistic of these compositions. However, an essential feature of relaxors i.e., frequency dependent dielectric permittivity as a function of temperature is observed only in x = 0.5 composition [Pb(Sc0.5Nb0.5)O3 (PSN)]. In addition, ferroelectric phase transition temperature (Tmax) increases initially at lower Sc content (upto x ≤ 0.25), and further drops beyond x ≥ 0.3. Such behavior of Tmax in these compositions is due to the onset of B'-B" local cation ordering at x = 0.3. High temperature Raman spectra of Pb(Sc0.5Nb0.5)O3 (x = 0.5) confirm the stability of cation ordering in compositions with high Sc content well above the phase transition temperature.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Blinc, R., Cevc, P., Zorko, A., Holc, J., Kosec, M., Trontelj, Z., Pirnat, J., Dalal, N., Ramachandran, V. and Krzystek, J., J. Appl. Phys. 101, 033901(2007).CrossRefGoogle Scholar
Yang, Y., Liu, J. M., Huang, H. B., Zou, W. Q., Bao, P. and Liu, Z. B., Phys. Rev. B. 70, 132101 (2004).CrossRefGoogle Scholar
Raymond, O., Font, R., Suarez-Almodovar, N., Portelles, J. and Siqueiros, J. M., J. Appl. Phys. 97, 084107 (2005).Google Scholar
Bonny, V., Bonin, M., Sciau, P., Schenk, K. J. and Chapuis, G., Solid State Commun. 102, 347 (1997).CrossRefGoogle Scholar
Lampis, N., Sciau, P. and Lehmann, A. G., J. Phys: Condens. Matter. 11, 3489 (1999).Google Scholar
Singh, S. P., Pandey, D., Yoon, S., Baik, S. and Shin, N., Appl. Phys. Lett. 90, 242915 (2007).CrossRefGoogle Scholar
Yan, L., Li, J. and Viehland, D., J. Appl. Phys. 101, 104107 (2007).CrossRefGoogle Scholar
Singh, S. P., Yusuf, S. M., Yoon, S., Baik, S., Shin, N. and Pandey, D., Acta Materialia. 58, 5381 (2010).CrossRefGoogle Scholar
Randall, C. A., Bhalla, A. S., Shrout, T. R. and Cross, L.E., J. Mater. Res. 5, 829 (1990).CrossRefGoogle Scholar
Mallesham, B., Ranjith, R. and Manivelraja, M., J. Appl. Phys. 116, 034104 (2014)CrossRefGoogle Scholar
Filippi, M., Kundys, B., Ranjith, R, Kundu, A. K. and Prellier, W., Appl. Phys. Lett. 92, 212905 (2008).CrossRefGoogle Scholar
Majumder, S. B., Bhattacharyya, S., Katiyar, R. S., Manivannan, A., Dutta, P. and Seehra, M. S., J. Appl. Phys. 99, 024108 (2006).CrossRefGoogle Scholar
Vershney, D., Choudhary, R. N. and Katiyar, R. S., Appl. Phys. Lett. 89, 172901 (2006).CrossRefGoogle Scholar
Correa, M., Choudhary, R. N. P. and Katiyar, R. S., J. Appl. Phys. 101, 054116 (2007).Google Scholar
Vittayakorn, N., Rujijanagul, G., Tan, X., Marquardt, M. A. and Cann, D. P., J. Appl. Phys. 96, 5103 (2004).CrossRefGoogle Scholar
Malibert, C., Dkhil, B., Kiat, J. M., Durand, D., Berar, J. F. and Bire, A. S., J. Phys: Condens. Matter. 9, 7485(1997).Google Scholar
Kozlenko, D. P., Kichanov, S. E., Lukin, E. V., Dang, N. T., Dubrovinsky, L. S., Liermann, H. P., Morgenroth, W., Kamynin, A. A., Gridnev, S. A. and Savenko, B. N., Phys. Rev. B 89, 174107 (2014).CrossRefGoogle Scholar
Correa, M., Kumar, A., Priya, S., Katiyar, R. S. and Scott, J. F, Phys. Rev. B 83, 014302 (2011).CrossRefGoogle Scholar
Rout, D., Subramanian, V., Hariharan, K., Sivasubramanian, V., Solid State Commun. 141, 192 (2007).CrossRefGoogle Scholar