Skip to main content Accessibility help
×
Home

Innovative Approaches to Addressing the Fundamental Materials Challenges in Hydrogen and Fuel Cell Technologies

  • Eric L. Miller (a1), Katie Randolph (a2), David Peterson (a2), Neha Rustagi (a1), Kim Cierpik-Gold (a3), Ben Klahr (a4) and J Carlos Gomez (a5)...

Abstract

The emergence of hydrogen and fuel cell technologies in transportation and stationary power sectors offers the world important and potentially transformative environmental and energy security benefits. In recent years, research supported by the U.S. Department of Energy’s (DOE) Fuel Cell Technologies Office has contributed substantially to the development of these technologies. Enhanced performance and reduced cost in automotive fuel cells are important examples of achievement. The research investments are clearly paying off, as commercial fuel-cell electric vehicles (FCEVs) are being rolled out by major car manufacturers today. With increasing market penetration of FCEVs, enabling technologies for the affordable and widespread production, storage and delivery of renewable hydrogen are becoming increasingly important. Long term commercial viability of hydrogen and fuel cells in the commercial marketplace will rely on continued materials research on several important fronts. Examples include the discovery and development of: (1) non-platinum-group-metal catalysts for next-generation fuel cells; (2) durable, high-performance photocatalytic materials systems for direct solar water splitting; (3) advanced materials-based systems for low-pressure, high-volumetric-density hydrogen storage; and (4) low-cost, hydrogen-compatible pipeline materials for hydrogen delivery and distribution. Research innovations in macro-, meso- and nano-scale materials are all needed for pushing forward the state-of-the-art in these areas. New approaches in accelerated materials development facilitated by a national Energy Materials Network of advanced scientific resources in theory, computation and experimentation are being adopted at DOE. Application of these approaches to address the key materials challenges in hydrogen and fuel cell technologies are discussed.

Copyright

Corresponding author

References

Hide All
1. National Science and Technology Council: Materials Genome Initiative for Global Competitiveness (2011). Available at: https://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf (accessed 16 March 2016).
2. The President’s Council of Advisors on Science and Technology: Capturing Domestic Competitive Advantage in Advanced Manufacturing, AMP Steering Committee Report (2012). Available at: https://www.whitehouse.gov/sites/default/files/microsites/ostp/pcast_amp_steering_committee_report_final_july_27_2012.pdf (accessed 16 March 2016).
3. U.S. Department of Energy Office of Energy Efficiency and Renewable Energy, “Energy Materials Network” (2016). Available at: http://www.energy.gov/eere/energy-materials-network/energy-materials-network (accessed 16 March 2016).
4. U.S. Department of Energy Hydrogen and Fuel Cells Program: FY2015 Annual Progress Report (2015). Available at: https://www.hydrogen.energy.gov/pdfs/progress15/iv_0_stetson_2015.pdf (accessed 16 March 2016).
5. U.S. Department of Energy Hydrogen and Fuel Cells Program: Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan (2015). Available at: http://energy.gov/eere/fuelcells/downloads/fuel-cell-technologies-office-multi-year-research-development-and-22 (accessed 16 March 2016).
6. U.S. Department of Energy Hydrogen and Fuel Cells Program: Hydrogen Storage Materials Database. Available at: http://hydrogenmaterialssearch.govtools.us/ (accessed 16 March 2016).
7. Lin, Z., Dong, J., and Greene, D.L., International Journal of Hydrogen Energy 38, 7973 (2013).
8. U.S. Department of Energy Hydrogen and Fuel Cells Program: Fuel Cell System Cost Program Record (2015). Available at: https://www.hydrogen.energy.gov/pdfs/15015_fuel_cell_system_cost_2015.pdf (accessed 16 March 2016).
9. U.S. Department of Energy Hydrogen and Fuel Cells Program: FY2015 Annual Progress Report (2015). Available at: https://www.hydrogen.energy.gov/pdfs/progress15/v_a_5_mukerjee_2015.pdf (accessed 16 March 2016).
10. U.S. Department of Energy Hydrogen and Fuel Cells Program: FY2015 Annual Progress Report (2015). Available at: https://www.hydrogen.energy.gov/pdfs/progress15/v_a_7_zelenay_2015.pdf (accessed 16 March 2016).
11. U.S. Department of Energy Hydrogen and Fuel Cells Program: FY2015 Annual Progress Report (2015). Available at: https://www.hydrogen.energy.gov/pdfs/progress15/v_a_8_myers_2015.pdf (accessed 16 March 2016).
12. U.S. Department of Energy Hydrogen and Fuel Cells Program: FY2015 Annual Progress Report (2015). Available at: https://www.hydrogen.energy.gov/pdfs/progress15/v_f_12_liu_2015.pdf (accessed 16 March 2016).
13. Ronevich, J.A., Somerday, B.P., and San Marchi, C.W., International Journal Of Fatigue. 82, 497 (2016).
14. U.S. Department of Energy Hydrogen and Fuel Cells Program: FY2015 Annual Progress Report (2015). Available at: https://www.hydrogen.energy.gov/pdfs/progress15/iii_3_somerday_2015.pdf (accessed 16 March 2016).
15. Ronevich, J.A. and Somerday, B. P., “Assessing Gaseous Hydrogen Assisted Fatigue Crack Growth Susceptibility of Pipeline Steel Weld Fusion Zones and Heat Affected Zones,” 15th International ASTM/ESIS Symposium on Fatigue and Fracture Mechanics in Anaheim, CA, May 20-22, 2015.
16. Somerday, B. P., “Hydrogen Embrittlement of Structural Steels,” Fuel Cell Technologies Office Annual Merit Review in Washington, DC, May 15, 2013.
17. Miller, E., “Hydrogen Production and Delivery Overview”, U.S. Department of Energy Hydrogen and Fuel Cells Program Annual Merit Review in Arlington, VA, June 8, 2015. Available at: https://www.hydrogen.energy.gov/pdfs/review15/pd000_miller_2015_o.pdf
18. Joint Center for Artificial Photosynthesis: Research Highlights. Available at: http://solarfuelshub.org/research-highlights (accessed 16 March 2016).
19. Gregoire, J.M., Van Campen, D.G., Miller, C.E., Jones, R.J.R., Suram, S.K., and Mehta, A., Journal Of Synchrotron Radiation 21, 1262 (2014).
20. Zhou, L., Yan, Q., Shinde, A., Guevarra, D., Newhouse, P.F., Becerra-Stasiewicz, N., Chatman, S.M., Haber, J.A., Neaton, J.B., and Gregoire, J.M., Advanced Energy Materials 5, (2015).
21. Guevarra, D., Shinde, A., Suram, S.K., Sharp, I.D., Toba, F.M., Haber, J.A., and Gregoire, J.M., Energy And Environmental Science 9, 565 (2016).
22. Chen, Zhebo, Jaramillo, Thomas F., Deutsch, Todd G., Kleiman-Shwarsctein, Alan, Forman, Arnold J., Gaillard, Nicolas, Garland, Roxanne, Takanabe, Kazuhiro, Heske, Clemens, Sunkara, Mahendra, McFarland, Eric W., Domen, Kazunari, Miller, Eric L., Turner, John A., Dinh, Huyen N., “Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols”, Journal of Materials 2010, 25(1), 316.
23. U.S. Department of Energy Hydrogen and Fuel Cells Program: FY2015 Annual Progress Report (2015). Available at: https://www.hydrogen.energy.gov/pdfs/progress15/ii_c_5_gaillard_2015.pdf (accessed 16 March 2016).
24. Gaillard, N., “Wide Bandgap Chalcopyrite Photoelectrodes for Direct Solar Water Splitting,” U.S. Department of Energy Hydrogen and Fuel Cells Program Annual Merit Review in Arlington, VA, June 11, 2015. Available at: https://www.hydrogen.energy.gov/pdfs/review15/pd116_gaillard_2015_o.pdf
25. U.S. Department of Energy Hydrogen and Fuel Cells Program: FY2015 Annual Progress Report (2015). Available at: https://www.hydrogen.energy.gov/pdfs/progress15/ii_c_4_deutsch_2015.pdf (accessed 16 March 2016).
26. U.S. Department of Energy Hydrogen and Fuel Cells Program: FY2015 Annual Progress Report (2015). Available at: https://www.hydrogen.energy.gov/pdfs/progress15/ii_c_2_weimer_2015.pdf (accessed 16 March 2016).
27. Musgrave, C., Muhich, C., Miller, S., Trottier, R., Smith, E., and Weimer, A., “Accelerated Discovery of Advanced RedOx Materials for STWS to Produce Renewable Hydrogen,” U.S. Department of Energy Hydrogen and Fuel Cells Program Annual Merit Review Arlington, VA, June 10, 2015. Available at: https://www.hydrogen.energy.gov/pdfs/review15/pd120_musgrave_2015_p.pdf
28. U.S. Department of Energy Hydrogen and Fuel Cells Program: FY2015 Annual Progress Report (2015). Available at: https://www.hydrogen.energy.gov/pdfs/progress15/ii_c_1_mcdaniel_2015.pdf (accessed 16 March 2016).
29. McDaniel, A. and Ermanoski, I., “High Efficiency Solar Thermochemical Reactor for Hydrogen Production,” U.S. Department of Energy Hydrogen and Fuel Cells Program Annual Merit Review in Arlington, VA, June 11, 2015. Available at: https://www.hydrogen.energy.gov/pdfs/review15/pd113_mcdaniel_2015_o.pdf

Keywords

Innovative Approaches to Addressing the Fundamental Materials Challenges in Hydrogen and Fuel Cell Technologies

  • Eric L. Miller (a1), Katie Randolph (a2), David Peterson (a2), Neha Rustagi (a1), Kim Cierpik-Gold (a3), Ben Klahr (a4) and J Carlos Gomez (a5)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed