Skip to main content Accessibility help
×
Home

Inkjet-Printing of Methylammonium Lead Trihalide Perovskite as Active Layers for Optoelectronic Devices

  • Charles Trudeau (a1) (a2), Martin Bolduc (a1), Patrick Beaupré (a1), Jaime Benavides-Guerrero (a2), Bruno Tremblay (a1) and Sylvain G. Cloutier (a2)...

Abstract

New routes in additive devices fabrication techniques and advances in printable materials are required to meet the ever increasing demands for low-cost and large-area flexible electronics. In particular, perovskite-based materials have gained an appeal due to their unique optoelectronics and ferroelectrics properties, which may replace p-n junction in semiconductor devices. Metal-organic methylammonium lead trihalide perovskite formulations have been extensively studied in the last few years as promising materials for use in printed electronics, which do not require high temperatures or vacuum environment, contrary to conventional semiconductor fabrication techniques. In this work, digital inkjet-printing in ambient atmosphere is proposed as a deposition pathway for the fabrication of perovskite active layers in photodetector and thin-film photovoltaic device architectures. The device architecture containing a printed perovskite active layer sandwiched between TiO2 and Spiro-OMeTAD as electron and hole transport layers, respectively, as well as layer-on-layer fabrication and responsivity spectra of the perovskite-based device are presented.

Copyright

Corresponding author

References

Hide All
1.Eggenhuisen, T., Galagan, Y., Biezemans, A.F., Slaats, T.M., Voorthuijzen, W.P., Kommeren, S., Shanmugam, S., Teunissen, J.P., Hadipour, A., Verhees, W.J., Veenstra, S.C., et al. ., J. Mater. Chem. A, 3(14), 72557262 (2015).
2.Gevaerts, V., Biezemans, A., Passet, Q., Eggenhuisen, T., Willems, R., Veenstra, S., Gilot, J., Kroon, J., Andriessen, R., et al. ., 43rd Photovoltaic Specialists Conference (PVSC), (2016).
3.Kim, H., Lim, K. and Lee, T., Energy & Environmental Science, 9(1), 1230 (2016).
4.Bolduc, M., Trudeau, C., Beaupré, P., Cloutier, S.G. and Galarneau, P., Nature Scientific Reports, 8, 14181426 (2018).
5.Trudeau, C., Bolduc, M., Beaupré, P., Topart, P., Alain, C. and Cloutier, S., MRS Advances, 2(18), 10151020 (2017).
6.Xu, F., Benavides, J., Ma, X. and Cloutier, S., J. Nanotechnol., 2012, 16 (2012).
7.Barnett, J., Cherrette, V., Hutcherson, C. and So, M., Advances in Materials Science and Engineering, 2016, 112 (2016).
8.Gonzalez-Pedro, V., Juarez-Perez, E., Arsyad, W., Barea, E., Fabregat-Santiago, F., Mora-Sero, I. and Bisquert, J., Nano Lett., 14(2),888893 (2014).
9.Gouda, L., Gottesman, R., Ginsburg, A., Keller, D., Haltzi, E., Hu, J., Tirosh, S., Anderson, A., Zaban, A. and Boix, P., J. Phys. Chem. Lett., 6(22), 46404645 (2015).
10.Hammond, P., Microelectron. Eng., 73-74, 893897 (2004).
11.Bai, H., Shen, T. and Tian, J., J. Mater. Chem. C, 5(40), 1054310548 (2017).
12.Leijtens, T., Eperon, G., Pathak, S., Abate, A., Lee, M. and Snaith, H., Nature Communications, 4, (2013).
13.Jeong, B., Cho, S., Cho, S., Lee, J., Hwang, I., Hwang, S., Cho, J., Lee, T. and Park, C.,, phys. status solidi (RRL), 10(5), 381387 (2016).
14.Xiao, Z., Dong, Q., Bi, C., Shao, Y., Yuan, Y. and Huang, J., Advanced Materials, 26(37), 65036509 (2014).
15.Benavides-Guerrero, J., Trudeau, C., Gerlein, L. and Cloutier, S.G., submitted to Nature Communications: NCOMMS-17-33072-T (2017).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed