Skip to main content Accessibility help

Infrared Propagating Electromagnetic Surface Waves Excited by Induction

  • Jonathan R. Brescia (a1) (a2), Justin W. Cleary (a3), Evan M. Smith (a3) (a2) and Robert E. Peale (a1)


Propagating inhomogeneous electromagnetic waves called surface plasmon polaritons (SPPs) can be excited by free-space beams on corrugated conducting surfaces at resonance angles determined by corrugation period, permittivity, and optical frequency. SPPs are coupled to and co-propagate with surface charge displacements. Complete electrical isolation of individual conducting corrugations prevents the charge displacement necessary to sustain an SPP, such that excitation resonances of traveling SPPs are absent. However, SPPs can be excited via electric induction if a smooth conducting surface exists below and nearby the isolated conducting corrugations. The dependence of SPP excitation resonances on that separation is experimentally investigated here at long-wave infrared wavelengths. We find that excitation resonances for traveling SPPs broaden and disappear as the dielectric’s physical thickness is increased beyond ∼1% of the free-space wavelength. The resonance line width increases with refractive index and optical thickness of the dielectric.


Corresponding author


Hide All Mol, Nico J., Fischer, Marcel J. E., “Surface Plasmon Resonance: A General Introduction” in Surface Plasmon Resonance, Methods and Protocols, edited by Mol, Nico J., Fischer, Marcel J. E. (Springer Humana, 2010), pp. 1-14.
2.Peale, R., Cleary, J., Shelton, D., Boreman, G., Soref, R., Buchwald, W., “Silicides for Infrared Surface Plasmon Resonance Biosensors,” Proc. Mat. Res. Soc. 1133-AA10-03 (2008).
3.Cleary, J. W., Medhi, G., Peale, R. E., Buchwald, W. R., Edwards, O., and Oladeji, I., “Infrared Surface Plasmon Resonance Biosensor,” Proc. SPIE 7673, 5 (2010).
4.Riffe, D. M., Hanssen, L. M., Sievers, A. J., Chabal, Y. J., and Christman, S. B., “Linewidth of H chemisorbed on W(100): An infrared study,” Surf. Sci. 161, L559 (1985).
5.Cleary, J. W., Medhi, G., Peale, R. E., and Buchwald, W. R., “Long-wave infrared surface plasmon grating coupler,” Appl. Optics 49, 3102 (2010).
6.Wolfe, W. L., “Optical materials,” in Handbook of Military Infrared Technology, Wolfe, W. L., ed. (Office of Naval Research, Washington D.C., 1965).
7.Cardimona, D. A. and Huang, D. H., “New optical detector concepts for space applications,” Proc. SPIE 7679, 767903 (2010).
8.Vahdani, M., Yaraghi, S., Neshasteh, H., Shahabadi, M., “Narrow-Band 4.3μm Plasmonic Schottky-Barrier Photodetector for CO2 Sensing,” Sensors Letters 3, 3500504 (2019)
9.Calhoun, S. R., Lowry, V. C., Stack, R., Evans, R. N., Brescia, J. R., Fredricksen, C. J., Nath, J., and Peale, R. E., “Effect of dispersion on metal-insulator-metal infrared absorption resonances,” MRS. Comm. 8, 830 (2018).
10.Jonathan Brescia, Grating Coupler for Surface Waves Based on Electrical Displacement Currents, Undergraduate Honors Thesis (UCF, Orlando, 2018).
11.Gibson, R., Vangala, S., Oladeji, I. O., Smith, E., Khalizadeh-Rezaie, F., Leedy, K., Peale, R. E., and Cleary, J. W., “Conformal spray-deposited fluorine-doped tin oxide for mid- and long-wave infrared plasmonicsOptical Materials Express 7, 2477 (2017).
12.Wu, C., Avitzour, Y., and Shvets, G., “Ultra-thin wide-angle perfect absorber for infrared frequencies,” Proc. SPIE, 7029, 70290W (2008).
13.Hao, J., Wang, J., Liu, X., Padilla, W. J., Zhou, L., and Qiu, M.High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
14.Liu, N., Mesch, M., Weiss, T., Hentschel, M., and Giessen, H., “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342 (2010).
15.Hao, J., Wang, J., Liu, X., Padilla, W. J., Zhou, L., and Qiu, M., “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
16.Wu, C., Neuner, B. III, John, J., Milder, A., Zollars, B., Savoy, S., and Shvets, G., “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B, 84, 075102 (2011).
17.Zhang, B., Zhao, Y., Hao, Q., Kiraly, B., Khoo, I.-C., Chen, S., and Huang, T. J., “Polarization-independent dual-band infrared perfect absorber based on a metal–dielectric–metal elliptical nanodisk array,” Opt. Express 19, 15221 (2011).
18.Wu, C. and Shvets, G., “Design of metamaterial surfaces with broadband absorbance,” Opt. Lett. 37, 308 (2012).
19.Lee, H. M. and Wu, J. C., “A wide-angle dual-band infrared perfect absorber based on metal–dielectric–metal split square-ring and square array,” J. Phys. D 45, 205101 (2012).
20.Diem, M., Koschny, T., and Soukoulis, C. M., “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79, 033101 (2009).
21.Liu, X., Starr, T., Starr, A. F., and Padilla, W. J., “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
22.Jiang, Z. H., Yun, S., Toor, F., Werner, D. H., and Mayer, T. S., “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5, 4641 (2011).
23.Cheng, C. W., Abbas, M. N., Chiu, C. W., Lai, K. T., Shih, M. H., and Chang, Y.-C., “Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays,” Opt. Express 20, 10376 (2012).
24.Cheng, H., Chen, S., Yang, H., Li, J., An, X., Gu, C., and Tian, J., “A polarization insensitive and wide-angle dual-band nearly perfect absorber in the infrared regime,” J. Opt. 14, 085102 (2012).
25.Cheng, D., Xie, J., Zhang, H., Wang, C., Zhang, N., and Deng, L., “Pantoscopic and polarization-insensitive perfect absorbers in the middle infrared spectrum,” J. Opt. Soc. Am. B 29, 1503 (2012).
26.Hendrickson, J., Guo, J., Zhang, B., Buchwald, W and Soref, R., “A wide-band perfect light absorber at mid-wave infrared using multiplexed metal structures,” Optics Letters 37, 371 (2012).
27.Nath, J., Panjwani, D., Khalilzadeh-Rezaie, F., Yesiltas, M., Smith, E. M., Ginn, J. C., Shelton, D. J., Hirschmugl, C., Cleary, J. W., Peale, R. E., “Infra-red spectral microscopy of standing-wave resonances in single metal-dielectric-metal thin-film cavity,” Proc. SPIE 9544, 95442M (2015).
28.Lefebvre, A., Costantini, D., Doyen, I., Lévesque, Q., Lorent, E., Jacolin, D., Greffet, J-J., Boutami, S., and Benisty, H.: CMOS compatible metalinsulator-metal plasmonic perfect absorbers. Opt. Mater. Express 6, 2389 (2016).
29.Mason, J. A., Smith, S., and Wasserman, D., “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98, 241105 (2011).
30.Ye, Y. Q., Jin, Y., and He, S., “Omnidirectional, polarization insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27, 498 (2010).
31.Ma, Y., Chen, Q., Grant, J., Saha, S. C., Khalid, A., and Cumming, D. R. S., “A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett. 36, 945 (2011).
32.He, X.-J., Wang, Y., Wang, J., Gui, T., and Wu, Q., “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Progress Electromagn. Res. 115, 381 (2011).
33.Huang, L., Chowdhury, D. R., Ramani, S., Reiten, M. T., Luo, S.-N., Taylor, A. J., and Chen, H.-T., “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Opt. Lett. 37, 154 (2012).
34.Nath, J., Modak, S., Rezadad, I., Panjwani, D., Rezaie, F., Cleary, J. W., and Peale, R. E., “Far-infrared absorber based on standing-wave resonances in metal-dielectric-metal cavity,” Optics Express 23, 20366 (2015).
35.Evans, R. N., Calhoun, S. R., Brescia, J. R., Cleary, J. W., Smith, E. M., and Peale, R. E., “Far-infrared bands in plasmonic metal-insulator-metal absorbers optimized for long-wave infrared,” MRS Advances 4, 667 (2019).
36.Lockyear, M. J., Hibbins, A. P., Sambles, J. R., Hobson, P. A., and Lawrence, C. R., “Thin resonant structures for angle and polarization independent microwave absorption,” Appl. Phys. Lett. 94, 041913 (2009).
37.Landy, N. I., Sajuyigbe, S., Mock, J. J., Smith, D. R., and Padilla, W. J., “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100, 207402 (2008).
38.Cleary, J. W., Medhi, G., Shahzad, M., Rezadad, I., Maukonen, D., Peale, R. E., Boreman, G. D., Wentzell, S., and Buchwald, W. R., “Infrared surface polaritons on antimony,” Optics Express 20, 2693 (2012).
39.Gorgulu, K., Gok, A., Yilmaz, M., Topalli, K., Bıyıklı, N., Okyay, Ali K., “All-Silicon Ultra-Broadband Infrared Light Absorbers,” Scientific Reports 6, 38589 (2016).
40.Barho, F. B., Gonzalez-Posada, F., Milla-Rodrigo, M-J., Bomers, M., Cerutti, L., and Taliercio, T., “All-semiconductor plasmonic gratings for biosensing applications in the mid-infrared,” Optics Express 24, 16175 (2016).
41.Adato, R.Yanik, A. A., Amsden, J. J., Kaplan, D. L., Omenetto, F. G., Hong, M. K., Erramilli, S., and Altug, H., “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” PNAS 106, 19227 (2009).
42.Rodrigo, D., Limaj, O., Janner, D., Etezadi, D., García de Abajo, F. J., Pruneri, V., Altug, H., “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165 (2015).


Infrared Propagating Electromagnetic Surface Waves Excited by Induction

  • Jonathan R. Brescia (a1) (a2), Justin W. Cleary (a3), Evan M. Smith (a3) (a2) and Robert E. Peale (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed