Skip to main content Accessibility help
×
Home

Influence of Pretreatment on Kinetics at Carbon Electrodes and Consequences for Flow Battery Performance

  • D. N. Buckley (a1) (a2), A. Bourke (a3), R. P. Lynch (a1), N. Quill (a1), M. A. Miller (a2), J. S. Wainright (a2) and R. F. Savinell (a2)...

Abstract

Using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), it was shown for four different types of carbon that electrode treatments at negative potentials enhance the kinetics of VIV-VV and inhibit the kinetics of VII-VIII while electrode treatments at positive potentials inhibit the kinetics of VIV-VV and enhance the kinetics of VII-VIII. These observations may explain conflicting reports in the literature. The potentials required for activation and deactivation of electrodes were examined in detail. The results suggest that interchanging the positive and negative electrodes in a vanadium flow battery (VFB) would reduce the overpotential at the negative electrode and so improve the performance. This is supported by flow-cell experiments. Thus, periodic catholyte-anolyte interchange, or equivalent alternatives such as battery overdischarge, show promise of improving the voltage efficiency of VFBs.

Copyright

Corresponding author

References

Hide All
1. Yang, Z. et al ., Chem. Rev., 111, 3577 (2011) and references therein
2. Perry, M. L. et al ., J. Electrochem. Soc., 163 , 1, A5064 (2016) and references therein
3. Reed, D. et al., J. Electrochem. Soc., 163, 1, A5211 (2016)
4. Skyllas-Kazacos, M. et al, J. Electrochem. Soc. 158, R55 (2011)
5. Miller, M. A. et al., J. Electrochem. Soc. 163, A2095 (2016)
6. Bourke, A. et al., J. Electrochem. Soc. 163, A5097 (2016) and references therein
7. Bourke, A. et al., J. Electrochem. Soc. 162, A1547 (2015)
8. Petchsingh, C. et al., J. Electrochem. Soc. 163, A5068 (2016)
9. Buckley, D. N. et al., J. Electrochem. Soc., 161 A524 (2014)
10. Oboroceanu, D. et al., J. Electrochem. Soc. 163, A2919 (2016) and references therein
11. Li, L. et al. Adv. Energy Mater. 1, 394 (2011)
12. Vijayakumar, M. et al., J. Power Sources 196, 3669 (2011); ibid 241, 173 (2013)
13. Kim, S. et al., Phys. Chem. Chem. Phys., 13, 18186 (2011)
14. Zhang, J. et al., J. Appl. Electrochem., 41, 1215 (2011)
15. Whitehead, A. H. et al., J. Power Sources 230, 271 (2013)
16. Oriji, G. et al., J. Power Sources 139, 321324 (2005)
17. Sum, E. et al., J. Power Sources 15, 179 (1985); ibid. 16, 85 (1985)
18. Aaron, D. et al., ECS Electrochemistry Letters, 2, A29 (2013)
19. Kaneko, H. et al., Electrochimica Acta, 36, 1191 (1991)
20. Gattrell, M. et al., J. Electrochem. Soc., 151, A123 (2004)
21. Shao, Y. et al., J. Power Sources 195, 4375 (2010)
22. Gao, X. et al., Energy and Environmental Science 8, 897 (2015)

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed