Skip to main content Accessibility help
×
Home

High Resolution Piezoresponse Force Microscopy Study of Self-Assembled Peptide Nanotubes

  • Maxim Ivanov (a1) (a2), Ohheum Bak (a3), Svitlana Kopyl (a1), Semen Vasilev (a4), Pavel Zelenovskiy (a4), Vladimir Shur (a4), Alexei Gruverman (a3) and Andrei Kholkin (a1) (a4)...

Abstract

Peptide nanotubes based on short dipeptide diphenylalanine (FF) attract a lot of attention due to their unique physical properties ranging from strong piezoelectricity to extraordinary mechanical rigidity. In this work, we present the results of high-resolution Piezoresponse Force Microscopy (PFM) measurements in FF microtubes prepared from the solution. First in-situ temperature measurements show that the effective shear piezoelectric coefficient d15 (proportional to axial polarization) significantly decreases (to about half of the initial value) under heating up to 100 oC. The piezoresponse becomes inhomogeneous over the surface being higher in the center of the tubes. Further, PFM study of a composite consisting of FF microtubes and reduced graphene oxide (rGO) was performed. We show that piezoelectric properties of peptide microtubes are significantly modified and radial (vertical) piezoresponse appears in the presence of rGO as confirmed via PFM analysis. The results are rationalized in terms of molecular approach in which π – π molecular interaction between rGO and dipeptide is responsible for the appearance of radial component of polarization in such hybrid structures.

Copyright

Corresponding author

References

Hide All
1. Kholkin, A., Amdursky, N., Bdikin, I., Gazit, E., and Rosenman, G., ACS Nano 4, 610 (2010).
2. Heredia, A., Bdikin, I., Kopyl, S., Mishina, E., Semin, S., Sigov, A, German, K., Bystrov, V., Gracio, J, and Kholkin, A. L., J. Phys. D: Appl. Phys. 43, 462001 (2010).
3. Vasilev, S., Zelenovskiy, P., Vasileva, D., Nuraeva, A., Shur, V. Ya., and Kholkin, A. L., J. Phys. Chem. Sol. 93, 68 (2016).
4. Salimian, M., Ivanov, M., Deepak, F. L., Petrovykh, D. Y., Bdikin, I., Ferro, M., Kholkin, A., Titus, E. and Goncalves, G.. J. Mater. Chem. C,3, 1151611523, (2015).
5. Bosne, E. D., Heredia, A., Kopyl, S., Karpinsky, D. V., Pinto, A. G., and Kholkin, A. L., Appl. Phys. Lett. 102, 073504 (2013).
6. Goncalves, G., Marques, P. A. A. P., Granadeiro, C. M., Nogueira, H. I. S., Singh, M. K., and Gracio, J., Chem. Mater. 21, 4796 (2009).
7. Kholkin, A. L., Kalinin, S. V., Roelofs, A., Gruverman, A., in Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale, Vol. I, (Eds: Kalinin, S., Gruverman, A.), Springer, New York, (2006).
8. Salehli, F., Kopyl, S., Shur, V.Y. and Kholkin, A. L., in preparation
9. Gazit, E.. FASEB J. 16, 77 (2002).
10. Görbitz, C.H., Chem. Eur. J. 7, 5153 (2001).
11. Choi, M. H., Min, Y. J., Gwak, G. H., Paek, S. M., and Oh, J. M., J. Alloys Compd. 610, 231 (2014).
12. da Cunha Rodrigues, G., Zelenovskiy, P., Romanyuk, K., Luchkin, S., Kopelevich, Y., Kholkin, A.. Nat. Commun. 7, 7572 (2015).
13. Hu, K., Kulkarni, D. D., Choi, I., and Tsukruk, V. V.. Progress in Polymer Science 39, 1934 (2014).
14. Wang, H., Hao, Q., Yang, X., Lu, L., and Wang, X.. ACS Appl. Mater. Interfaces 2, 821 (2010).
15. Cheng, Y., Koh, L-D., Li, D., Ji, B., Zhang, Y., Yeo, J., Guan, G., Han, M-Y, and Zhang, Y-W. ACS Appl. Mater. Interfaces 7, 21787 (2015).

Keywords

High Resolution Piezoresponse Force Microscopy Study of Self-Assembled Peptide Nanotubes

  • Maxim Ivanov (a1) (a2), Ohheum Bak (a3), Svitlana Kopyl (a1), Semen Vasilev (a4), Pavel Zelenovskiy (a4), Vladimir Shur (a4), Alexei Gruverman (a3) and Andrei Kholkin (a1) (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed