Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-18T22:57:40.995Z Has data issue: false hasContentIssue false

High Aspect Ratio Machining of Nanocarbon Materials by Reactive Ion Etching

Published online by Cambridge University Press:  23 January 2017

Atsuko Sekiguchi*
Affiliation:
CNT-Application Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8565, JAPAN
Don N. Futaba
Affiliation:
CNT-Application Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8565, JAPAN
Takeo Yamada
Affiliation:
CNT-Application Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8565, JAPAN
Kenji Hata
Affiliation:
CNT-Application Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8565, JAPAN
Get access

Abstract

We demonstrate anisotropic, vertical deep etching of graphite and densely packed carbon nanotube (CNT) thick layer beyond the micrometer scale, which representing the first step toward nanocarbon bulk micromachining. This micromachining process is compatible with standard lithography and therefore allows the fabrication of graphite and CNT architectures with 1 μm lateral resolution and up to 10 μm scale depth.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bunch, J. S., Zande, A. M., Verbridge, S. S., Frank, I. W., Tanenbaum, D. M., Parpia, J. M., Craighead, H. G., McEuen, P. L., Science, 315, 490493 (2007).Google Scholar
Chen, C., Rosenblatt, S., Bolotin, K. I., Kalb, W., Kim, P., Kymissis, I., Stormer, H. L., Heinz, T. F., Hone, J., Nature Nanotech., 4, 861867 (2009).Google Scholar
Singh, V., Sengupta, S., Solanki, H. S., Dhall, R., Allain, A., Dhara, S., Pant, P., Deshmukh, M., Nanotechnology, 21, 18 (2010).Google Scholar
Hayamizu, Y., Yamada, T., Mizuno, K., Davis, R. C., Futaba, D. N., Yumura, M., Hata, K., Nature Nanotech., 3, 289294 (2008).CrossRefGoogle Scholar
Hayamizu, Y., Davis, R. C., Yamada, T., Futaba, D. N., Yasuda, S., Yumura, M., Hata, K., Phys. Rev. Lett., 102, 175505 (2009).Google Scholar
Yamada, T., Makimoto, N., Sekiguchi, A., Yamamoto, Y., Kobashi, K., Hayamizu, Y., Yomogida, Y., Tanaka, H., Shima, H., Akinaga, H., Futaba, D. N., Hata, K., Nano Lett., 12, 45404545 (2012).Google Scholar
Luo, W., Xie, J., Li, C., Zhang, Y., Xia, Y., Nanotechnology, 23, 375303 (2012).Google Scholar
Fredriksson, H., Chakarov, D., Kasemo, B., Carbon, 47, 13351342 (2009).CrossRefGoogle Scholar
Kondo, S., Kondo, H., Miyawaki, Y., Sasaki, H., Kano, H., Hiramatsu, M., Hori, M., Jpn. J. Appl. Phys., 50, 075101 (2011).Google Scholar