Skip to main content Accessibility help
×
Home

Heterojunction solar cells on flexible silicon wafers

  • André Augusto (a1), Pradeep Balaji (a1), Harsh Jain (a1), Stanislau Y. Herasimenka (a1) and Stuart G. Bowden (a1)...

Abstract

Current large-scale production of flexible solar devices delivers cells with low efficiency. In this paper we present an alternative path to organic or inorganic thin films. Our cells combine the remarkable surface passivation properties of the silicon heterojunction solar cells design, and the quality of n-type Cz wafers. The cells were manufactured on 50-70 µm-thick wafers. The cells have and efficiency of 17.8-19.2%, open-circuit voltages of 735-742 mV, short-circuit currents of 34.5-35.5 mA/cm2, and fill-factors of 72-75%. The cells are not as flexible as bare wafers. Thin cells are particular sensitive to the additional stress introduced by the busbars and the soldered ribbons. For radiuses of curvature over 8cm the cells efficiency remains the same, for radius equal to 6cm the cell efficiency drops less than 2%, and for radius equal to 4cm the drop is less than 3%. The broken fingers due to smaller bend radius lead to higher series resistance and subsequently lower field-factors.

Copyright

Corresponding author

*(Email: augusto@asu.edu)

References

Hide All
1.Vygranenko, Y., Khosropour, A., Yang, R., Sazonov, A., Kosarev, A., Abramov, A., and Terukove, E.., Canadian Journal of Physics 92, 871 (2014).
2.Reinhard, P., Chirila, A., Blosch, P., Pianezzi, F., Nishiwaki, S., Buechelers, S., and Tiwari, A.N., IEEE Journal of Photovoltaics 3, 572 (2013).
3.Schuetze, T., Energies 6, 2982 (2013).
4.Redweik, P., Catita, C., and Brito, M., Solar Energy 97, 332 (2013).
5.Wolf, S., Descoeudres, A., Holman, Z. C., and Ballifl, C., Green 2, 7 (2012).
6.Aberle, A. G., Prog. Photovolt: Res. Appl. 8, 473 (2000).
7.Y Herasimenkal, S., J Dauksher, W., J Tracy, C., Lee, J., Augusto, A., Jain, H., Tyler, K., Kiefer, Z., Balaji, P., Bowden, S. G. and Honsberg, C., in Proceedings of 31st European Photovoltaic Solar Energy Conference and Exhibition, 761 (2015).
8.Herasimenka, S. Y., Dauksher, B., Tracy, C., Pickett, G., Ghosh, K., Sharma, V., Bailly, M., and Bowden, S. G., in proceedings of 28th European Photovoltaic Specialists Conference (2013).
9.Mews, M., Schulze, T. F., Mingirulli, N., and Korte, L., Appl. Phys Lett. 102, 122106 (2013).
10.Geissbuhler, J., Wolf, S., Demaurex, B., Seif, J. P., Alexander, D. T. L., Barraud, L., and Ballif, C., Appl. Phys Lett. 102, 231604 (2013)
11.Holman, Z. C., Filipic, M., Descoeudres, A., Wolf, S., Smole, F., Topic, M., and Ballif, C., Appl. Phys Lett. 113, 013107 (2013).
12.Gogolin, R., Turcu, M., Ferre, , Clemens, J., Harder, N. P., Brendel, R., and Schmidt, J., IEEE Journal of Photovoltaics 4, 1169 (2014).
13.Demant, M., Rein, S., Krisch, J., Schoenfelder, S., Fischer, C., Bartsch, S., and Preu, R., in Proceedings of 37th IEEE Photovoltaic Specialists Conference, 001641 (2011).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed