Skip to main content Accessibility help

Growth of Perovskite Nanorods from PbS Quantum Dots

  • José Maria C. da Silva Filho (a1) and Francisco C. Marques (a1)


Organolead iodide perovskites, CH3NH3PbI3, have attracted the attention of researchers around the world due to their optical and electrical properties. Their main characteristics include, direct band-gap (1.4 to 3.0 eV), large absorption coefficient in the visible spectrum, long carrier diffusion length and ambipolar charge transport. Aside that, perovskite thin films can be produced with low cost and are compatible with large-scale manufacture. Perovskite thin films have been synthesized mainly by spin-coating technique and thermal evaporation, which can be executed in one or two steps. Aiming to increase the light absorption, nanostructured perovskite thin films are also under intense study, since the nanostructures can absorb more light than a flat film. Thus, in this work, we reported the synthesis of perovskite (CH3NH3PbI3) nanorods by means of conversion of lead sulphide quantum dots (PbSQD). The perovskite nanorods were grown by exposing the PbSQD to a highly concentrated iodine atmosphere and then dipping the resulting film in methylammonium iodide (CH3NH3I) solution. The first step converts completely the PbSQD into lead iodide (PbI2) nanowires, ≈50 µm long and ≈200 nm diameter, through substitution of sulphur by iodine atoms and subsequent aggregation of the particles. The later step converts the PbI2 nanowires in perovskite nonorods (≈5 µm long and ≈400 nm diameter). The perovskite nanorods present a regular geometry along all its length. A preferential alignment of nanorods to the substrate plane was observed. The preliminary results show that we can control the size of nanorods through exposition time of PbSQD to iodine, which change the size of PbI2 nanowire as well. The conversion process was studied by x-ray diffraction, optical absorption, photoluminescence and scanning electron microscopy.


Corresponding author


Hide All
[1]Patra, M. K., Manoth, M., Singh, V. K., Siddaramana Gowd, G., Choudhry, V. S., Vadera, S. R., and Kumar, N., J. Lumin. 129, 320 (2009).
[2]Shalom, M., Ruhle, S., Hod, I., Yahav, S., and a Zaban, , J. Am. Chem. Soc. 131, 9876 (2009).
[3]Crisp, R. W., Kroupa, D. M., Marshall, A. R., Miller, E. M., Zhang, J., Beard, M. C., and Luther, J. M., Sci. Rep. 5, 9945 (2015).
[4]Hines, M. A. and Scholes, G. D., Adv. Mater. 15, 1844 (2003).
[5]Murray, C. B., Kagan, C. R., and Bawendi, M. G., Annu. Rev. Mater. Sci. 30, 545 (2000).
[6]Dasgupta, N. P., Lee, W., and Prinz, F. B., Chem. Mater. 21, 3973 (2009).
[7]Dasgupta, N. P., Jung, H. J., Trejo, O., McDowell, M. T., Hryciw, A., Brongersma, M., Sinclair, R., and Prinz, F. B., Nano Lett. 11, 934 (2011).
[8]Machol, J. L., Wise, F. W., Patel, R. C., and Tanner, D. B., Phys. Rev. B 48, 2819 (1993).
[9]Yang, Z., Voznyy, O., Liu, M., Yuan, M., Ip, A. H., Ahmed, O. S., Levina, L., Kinge, S., Hoogland, S., and Sargent, E. H., ACS Nano 9, 12327 (2015).
[10]De Iacovo, A., Venettacci, C., Colace, L., Scopa, L., and Foglia, S., Sci. Rep. 6, 37913 (2016).
[11]Yuan, M., Liu, M., and Sargent, E. H., Nat. Energy 1, 16016 (2016).
[12]Kim, Y., Yassitepe, E., Voznyy, O., Comin, R., Walters, G., Gong, X., Kanjanaboos, P., Nogueira, A. F., and Sargent, E. H., ACS Appl. Mater. Interfaces 7, 25007 (2015).
[13]Fu, P., Shan, Q., Shang, Y., Song, J., Zeng, H., Ning, Z., and Gong, J., Sci. Bull. 62, 369 (2017).
[14]Im, J.-H., Luo, J., Franckevičius, M., Pellet, N., Gao, P., Moehl, T., Zakeeruddin, S. M., Nazeeruddin, M. K., Grätzel, M., and Park, N.-G., Nano Lett. 15, 2120 (2015).
[15]Zhu, H., Fu, Y., Meng, F., Wu, X., Gong, Z., Ding, Q., Gustafsson, M. V., Trinh, M. T., Jin, S., and Zhu, X.-Y., Nat. Mater. 14, 636 (2015).
[16]da Silva Filho, J. M. C., Ermakov, V. A., Bonato, L. G., Nogueira, A. F., and Marques, F. C., MRS Adv. 2, 841 (2017).
[17]Chaudhuri, T. K. and Acharya, H. N., Mater. Res. Bull. 17, 279 (1982).
[18]da Silva Filho, J. M. C., Ermakov, V. A., and Marques, F. C., Sci. Rep. 8, 1563 (2018).
[19]Ummadisingu, A., Steier, L., Seo, J.-Y. Y., Matsui, T., Abate, A., Tress, W., and Grätzel, M., Nature 545, 208 (2017).


Related content

Powered by UNSILO

Growth of Perovskite Nanorods from PbS Quantum Dots

  • José Maria C. da Silva Filho (a1) and Francisco C. Marques (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.