Skip to main content Accessibility help

Glass structure and crystallization in boro-alumino-silicate glasses containing rare earth and transition metal cations: a US-UK collaborative program

  • John S. McCloy (a1) (a2), José Marcial (a1), Deepak Patil (a1), Muad Saleh (a1), Mostafa Ahmadzadeh (a1), Hua Chen (a1) (a3), Jarrod V. Crum (a2), Brian J. Riley (a1) (a2), Hrishikesh Kamat (a4), Antoine Bréhault (a4), Ashutosh Goel (a4), Kristian E. Barnsley (a5), John V. Hanna (a5), Prashant Rajbhandari (a6), Claire L. Corkhill (a6), Russell J. Hand (a6) and Neil C. Hyatt (a6)...


Nuclear wastes generated from reprocessing of used nuclear fuel tend to contain a large fraction of rare earth (RE, e.g., Nd3+), transition (TM, e.g., Mo6+, Zr4+), alkali (A, e.g., Cs+), and alkaline earth cations (AE, e.g., Ba2+, Sr2+). Various strategies have been considered for immobilizing such waste streams, varying from nominally crystal-free glass to glass-ceramic to multi-phase ceramic waste forms. For glass and glass-ceramic waste forms, the added glass-forming system is generally alkali-alkaline earth-aluminoborosilicate (i.e., Na-Ca-Al-B-Si oxide). In a US-UK collaborative project, summarized here, we investigated the glass structure and crystallization dependence on compositional changes in simulated nuclear waste glasses and glass-ceramics. Compositions ranged in complexity from five – to – eight oxides. Specifically, the roles of Mo and rare earths are investigated, since a proposed glass-ceramic waste form contains crystalline phases such as powellite [(AE,A,RE)MoO4] and oxyapatite [(RE,AE,A)10Si6O26], and the precipitation of molybdenum phases is known to be affected by the rare earth concentration in the glass. Additionally, the effects of other chemical additions have been systematically investigated, including Zr, Ru, P, and Ti. A series of studies were also undertaken to ascertain the effect of the RE size on glass structure and on partitioning to crystal phases, investigating similarities and differences in glasses containing single RE oxides of Sc, Y, La, Ce, Nd, Sm, Er, Yb, or Lu. Finally, the effect of charge compensation was investigated by considering not only the commonly assessed peralkaline glass but also metaluminous and peraluminous compositions. Glass structure and crystallization studies were conducted by spectroscopic methods (i.e., Raman, X-ray absorption, nuclear magnetic resonance (NMR), optical absorption, photoluminescence, photoluminescence excitation, X-ray photoelectron spectroscopy), microscopy (i.e., scanning electron microscopy, transmission electron microscopy, electron probe microanalysis), scattering (i.e., X-ray and neutron diffraction, small angle measurements), and physical characterization (i.e., differential thermal analysis, liquidus, viscosity, density). This paper will give an overview of the research program and some example unpublished results on glass-ceramic crystallization kinetics, microstructure, and Raman spectra, as well as some examples of the effects of rare earths on the absorption, luminescence, and NMR spectra of starting glasses. The formal collaboration described here has resulted in the generation of a large number of results, some of which are still in the process of being published as separate studies.


Corresponding author


Hide All
1Crum, J.V., Turo, L., Riley, B., Tang, M. and Kossoy, A., J. Am. Ceram. Soc. 95, 1297 (2012).
2Crum, J., Maio, V., McCloy, J., Scott, C., Riley, B., Benefiel, B., Vienna, J., Archibald, K., Rodriguez, C., Rutledge, V., Zhu, Z., Ryan, J. and Olszta, M., J. Nucl. Mater. 444, 481 (2014).
3Vienna, J.D., Crum, J.V., Sevigny, G.J. and Smith, G.L., Preliminary Technology Maturation Plan for Immobilization of High-Level Waste in Glass-Ceramics, Pacific Northwest National Laboratory, Richland, WA, PNNL-21714, FCRD-SWF-2012-000152 (2012).
4Tan, S., Ojovan, M.I., Hyatt, N.C. and Hand, R.J., J. Nucl. Mater. 458, 335 (2015).
5Assessment of the State of the Art of HLW and ILW Processing Technologies for Fast Reactor Recycle Wastes, National Nuclear Laboratory NNL(13)12536 (2013).
6The UK’s Nuclear Future, Department for Business, Innovation and SkillsHM Government Industrial Strategy Report (2013).
7McCloy, J.S., Riley, B., Crum, J., Marcial, J., Reiser, J., Kruska, K., Peterson, J., Neuville, D., Patil, D., Barnsley, K. and Hanna, J.V., (submitted).
8Brehault, A., Patil, D., Kamat, H., Youngman, R.E., Thirion, L.M., Mauro, J.C., Corkhill, C.L., McCloy, J.S. and Goel, A., J. Phys. Chem. B 122, 1714 (2018).
9Patil, D.S., Konale, M., Gabel, M., Neill, O.K., Crum, J.V., Goel, A., Stennett, M.C., Hyatt, N.C. and McCloy, J.S., J. Nucl. Mater. 510, 539 (2018).
10McCloy, J., Marcial, J., Riley, B., Neufeind, J., Crum, J. and Patil, D., MRS Adv. (accepted).
11Calas, G., Le Grand, M., Galoisy, L. and Ghaleb, D., J. Nucl. Mater. 322, 15 (2003).
12Martineau, C., Michaelis, V.K., Schuller, S. and Kroeker, S., Chem. Mater. 22, 4896 (2010).
13Chouard, N., Caurant, D., Majérus, O., Dussossoy, J.L., Klimin, S., Pytalev, D., Baddour-Hadjean, R. and Pereira-Ramos, J.P., J. Mater. Sci. 1 (2014).
14Chouard, N., Caurant, D., Majérus, O., Dussossoy, J.L., Ledieu, A., Peuget, S., Baddour-Hadjean, R. and Pereira-Ramos, J.P., J. Non-Cryst. Solids 357, 2752 (2011).
15Majérus, O., Caurant, D., Quintas, A., Dussossoy, J.-L., Bardez, I. and Loiseau, P., J. Non-Cryst. Solids 357, 2744 (2011).
16Quintas, A., Caurant, D., Majérus, O., Loiseau, P., Charpentier, T. and Dussossoy, J.-L., J. Alloys Compd. 714, 47 (2017).
17Perret, D., Bardez-Giboire, I., Dussosoy, J.L., Bousquet, N. and Baudet, F. in JMP Discovery Summit, 2011,, accessed 1 Dec 2018.
18Chouard, N., Caurant, D., Majérus, O., Guezi-Hasni, N., Dussossoy, J.-L., Baddour-Hadjean, R. and Pereira-Ramos, J.-P., J. Alloys Compd. 671, 84 (2016).
19Farges, F., Siewert, R., Brown, G.E., Guesdon, A. and Morin, G., Canad. Mineral. 44, 731 (2006).
20Hyatt, N.C., Short, R.J., Hand, R.J., Lee, W.E., Livens, F., Charnock, J.M. and Bilsborrow, R.L., In Environmental Issues and Waste Management Technologies in the Ceramic and Nuclear Industries X, edited, (John Wiley & Sons, Inc., 2006), pp. 179.
21McKeown, D.A., Gan, H. and Pegg, I.L., J. Nucl. Mater. 488, 143 (2017).
22Ponader, C.W. and Brown, G.E., Geochim. Cosmochim. Acta 53, 2893 (1989).
23Trégouët, H., Caurant, D., Majérus, O., Charpentier, T., Cormier, L. and Pytalev, D., Procedia Mater. Sci. 7, 131 (2014).
24Bardez, I., Caurant, D., Loiseau, P., Baffier, N., Dussossoy, J.L., Gervais, C., Ribot, F. and Neuville, D.R., Phys. Chem. Glasses 46, 320 (2005).
25Quintas, A., Caurant, D., Majérus, O., Charpentier, T. and Dussossoy, J.L., Mat. Res. Bull. 44, 1895 (2009).
26Nicoleau, E., Angeli, F., Schuller, S., Charpentier, T., Jollivet, P. and Moskura, M., J. Non-Cryst. Solids 438, 37 (2016).
27Kroeker, S., Schuller, S., Wren, J.E.C., Greer, B.J. and Mesbah, A., J. Am. Ceram. Soc. 99, 1557 (2016).
28Magnin, M., Schuller, S., Mercier, C., Trébosc, J., Caurant, D., Majérus, O., Angéli, F. and Charpentier, T., J. Am. Ceram. Soc. 94, 4274 (2011).
29Caurant, D., Majérus, O., Fadel, E., Quintas, A., Gervais, C., Charpentier, T. and Neuville, D., J. Nucl. Mater. 396, 94 (2010).
30Kroeker, S., Higman, C.S., Michaelis, V.K., Svenda, N.B. and Schuller, S., Mater. Res. Soc. Symp. Proc. 1265, (2010).
31Angeli, F., Villain, O., Schuller, S., Ispas, S. and Charpentier, T., Geochim. Cosmochim. Acta 75, 2453 (2011).
32Belov, K.P., Kadmtseva, A.M. and Levitin, R.Z., Sov. Phys. JETP 20, 291 (1965).
33Bohigas, X., Lluma, J., Tejada, J., Vistin, L.L., Sorokin, N.I. and Sobolev, B.P., Bull. Soc. Cat. Cien. 13, 273 (1992).
34Shannon, R.D., Acta Crystallog. A 32, 751 (1976).
35Nicoleau, E., Schuller, S., Angeli, F., Charpentier, T., Jollivet, P., Le Gac, A., Fournier, M., Mesbah, A. and Vasconcelos, F., J. Non-Cryst. Solids 427, 120 (2015).
36Dejneka, M.J., Streltsov, A., Pal, S., Frutos, A.G., Powell, C.L., Yost, K., Yuen, P.K., Müller, U. and Lahiri, J., Proc. Natl. Acad. Sci. U. S. A. 100, 389 (2003).
37Caurant, D., Opt. Spectrosc. 116, 667 (2014).
38Bardez, I., Caurant, D., Dussosoy, J.L., Loiseau, P., Gervais, C., Ribot, F., Neuville, D., Baffier, N. and Fillet, C., Nucl. Sci. Eng. 153, 272 (2006).
39Kidari, A., Dussossoy, J.-L., Brackx, E., Caurant, D., Magnin, M. and Bardez-Giboire, I., J. Am. Ceram. Soc. 95, 2537 (2012).
40Winterstein-Beckmann, A., Möncke, D., Palles, D., Kamitsos, E.I. and Wondraczek, L., J. Phys. Chem. B 119, 3259 (2015).
41Ohashi, H., Alba, M.D., Becerro, A.I., Chain, P. and Escudero, A., J. Phys. Chem. Solids 68, 464 (2007).
42Soetebier, F. and Urland, W., Kristallogr, Z.. - New Cryst. Struct. 217, 22 (2002).
43Foord, E.E., Birmingham, S.D., Demartin, F., Pilati, T., Gramaccioli, C.M. and Lichte, F.E., Canad. Mineral. 31, 337 (1993).
44Qian, M., Li, L., Li, H. and Strachan, D.M., J. Non-Cryst. Solids 333, 1 (2004).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed